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Abstract 
 
     An experimental and analytical fatigue life study was performed on the 
Grainex Mar-M 247 disk used in NASA’s Turbine Seal test facility.  To preclude 
fatigue cracks from growing to critical size in the NASA disk bolt holes due to 
cyclic loading at severe test conditions, a retirement-for-cause methodology was 
adopted to detect and monitor cracks within the bolt holes using eddy-current 
inspection. 
     For the NASA disk material that was tested, the fatigue strain-life to crack 
initiation at a total strain of 0.5%, a minimum to maximum strain ratio of 0, and a 
bolt hole temperature of 649°C was calculated to be 665 cycles using -99.95% 
prediction intervals.  The fatigue crack propagation life was calculated to be 367 
cycles after implementing a safety factor of 2 on life.  Thus, the NASA disk bolt 
hole total life or retirement life was determined to be 1032 cycles at a crack  
depth of 0.501 mm.  An initial NASA disk bolt hole inspection at 665 cycles is 
suggested with 50 cycle inspection intervals thereafter to monitor fatigue crack 
growth.  
 
 
1. Introduction, Background, Objective 
 
1.1 Introduction 
 
     The High Temperature High Speed Turbine Seal test facility, located at NASA 
Glenn Research Center (NASA GRC) in Cleveland, Ohio provides a critical 
research capability in testing gas path air seals, such as labyrinth, brush, or 
finger seals, for next generation aircraft engines.  Engine seals are located in the 
compressor and turbine engine sections as well as in the secondary flow areas 
and serve to minimize unwanted air leakage across blades tips and rims as well 
as main shafts.  By maintaining a close clearance, they help to reduce specific 
fuel consumption and thereby aid in reducing direct operating costs.1  The turbine 
seal test stand (Figure 1.1) can test candidate seal designs at high temperatures, 
high seal pressures, and surface speeds greater than 300 m/s.   
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Figure 1.1  NASA’s turbine seal test facility. 

 
The test facility uses a disk made of Grainex Mar-M 247 (hereafter called  

the NASA disk).  It is a cast nickel based superalloy whose outer diameter is  
in contact with or is within close proximity of the test seal inner diameter.   
The Grainex Mar-M 247 material’s high strength and creep resistance at 
temperatures between 150 to 1500°C  make it an excellent material for turbine 
blades, vanes, and disks.2 
     Because the NASA disk experiences a severe test combination of high 
temperature, high pressure, and high speed, the possibility exists that fatigue 
cracks will develop with cycling at the 6 bolt hole locations, which fasten it to the 
main shaft of the turbine seal test stand.  If allowed to grow to a critical size, the 
cracks could cause the NASA disk to catastrophically burst during use. 
     Preliminary analyses by Tong and Steinetz3 have placed a strain-life limit, Lsys, 
of 6000 cycles based upon an equivalent -3σ reduction factor and a probabilistic 
approach4 accounting for n = 6 bolt holes:   

 
e

sys

n

LL 1=    Eqn.  1.1 (Ref. 4) 

where Lsys = overall system life 
 L     = calculated NASA disk life  = 10,000 cycles 
 n    =   number of bolt holes  = 6 
 e    = Weibull slope parameter = 3.57 (Gaussian Distribution) 
 
Eqn. 1.1 is based on the Lundberg-Palmgren4 analysis for rolling element 
bearing system lives.  L is the predicted life for a disk with a single bolt hole.  The 
predicted life, L, and Weibull slope parameter, e, are assumed to be identical for  
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all six disk bolt holes.  However, the preliminary analysis does not address the 
existence of a crack at the bolt hole surface which, if allowed to grow to a critical 
size, would lead to a catastrophic NASA disk failure in the turbine seal test rig.   
     The 1996 engine failure of an MD-88 during take-off was a specific example 
of an uncontained disk failure resulting from a pre-existent crack.5  During take-
off the hub section of the Pratt & Whitney JT8D-219 engine separated from its 
low-pressure compressor section.  The hub failure released high energy blade 
and engine fragments (Figure 1.2) which broke through the engine structure and 
penetrated the plane’s main cabin killing 2 of the passengers.  Metallurgical 
examination of the origin of the hub failure revealed a 25 mm crack found within 
one of the twenty-four 12.7 mm diameter tierod bolt holes which secure the hub 
to the low-pressure compressor (Figure 1.2).  The crack was described by a 
National Transportation and Safety Board senior metallurgist as a “progressive 
crack that increased with time”.5  Inspection records indicated that the hub had 
accumulated approximately 13,000 cycles of an expected 20,000 cycles to 
replacement, a cycle being defined as a takeoff and touchdown.  The hub had 
been visually inspected six months before using a dye penetrant procedure that 
should have indicated the presence of any cracks.5    

The crack may have been missed during inspection or may have developed 
in the following months of engine operation.  The consequences of such fatigue 
failures strongly emphasize the need to accurately detect the presence, location, 
and size of a crack within a structure and then to assess the integrity of that 
structure for further operation.  Similarly, cracks within the bolt holes of the NASA 
disk of the turbine seal test facility may develop and grow over time with 
increasing number of cycles.  NASA disk cycles are defined as a ramp up and 
down in speed at constant test air temperature and pressure. 
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Figure 1.2  Uncontained failure of an engine hub with the crack location at 

the tierod holes of a Pratt & Whitney JT8D-219 engine.5 
      

The process of regularly inspecting a critical component to detect the 
presence, location, and size of a crack is usually accomplished through non-
destructive inspection methods, such as eddy-current inspection.  Using strain-
life and fatigue crack growth data, the cycles to crack initiation and failure can be 
determined.  From this data, the inspection frequency and an appropriate NASA 
disk retirement criteria (i.e. crack length) can be determined.  

Eddy-current inspection is based on electromagnetic induction principles, and 
is used to detect microscopic cracks at or near a material’s surface.  A wire 
coiled probe (Figure 1.3), containing an alternating current, is normally inserted 
into the disk bolt holes.  Any surface or subsurface cracks can be sensed by the 
coil.  A reference sample of the same material with a mechanically produced 
crack is used for comparison.6 
 

Tierod 



 

NASA/TM—2005-213873 5 

 
Figure 1.3  Eddy-Current inspection of disk bolt holes using a Bobbin-Type 

coil.6 
 
     The detection of cracks on aircraft engine components through eddy-current 
inspection is part of a fracture control philosophy in which critical engine parts are 
designed based upon a damage tolerance approach.  This requires that a 
fracture critical part is still functional even though microscopic cracks, introduced 
during manufacture or service, are present.  The Air Force’s Engine Structural 
Integrity Program is an example of one program that has adopted this damage 
tolerance philosophy.7  Damage tolerant approaches fit under fail-safe design 
methodologies which hold the view that a crack will not be allowed to grow to 
critical size within a component before it can be inspected and either replaced or 
repaired.7 
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1.2 Objectives 
 
     The Grainex Mar-M 247 NASA disk in the turbine seal test rig can be 
considered as the fracture critical component that may contain a defect that could 
grow to critical size during service.  A damage tolerant approach for the NASA 
disk would require an inspection interval to monitor the growth of cracks within 
the bolt holes and would also require a critical crack length criterion from which to 
retire the NASA disk from service. 
     This study proposes a damage tolerant approach to monitoring the presence 
and growth of cracks within the bolt holes of the NASA disk.  Fatigue crack-
initiation and fatigue crack growth lives would be experimentally determined to 
obtain a total fatigue life for the NASA disk and an appropriate inspection interval. 
     Little has been published on the strain-life and fatigue crack growth of Grainex 
Mar-M 247, particularly at the 649°C operating temperature of interest.8,9,10,11,12,13 
The goals of the study were two-fold.   
 
1. Determine the crack initiation life of the NASA disk, at various strain ratios, 

using experimentally determined strain-life fatigue behavior at its maximum 
operational test temperature.  Conduct a statistical analysis of the test data to 
bound the fatigue life within known prediction limits. 

2. Experimentally determine the critical crack size of the NASA disk and use the 
results to determine an eddy-current inspection interval.  Perform a statistical 
analysis of the crack-growth data to determine the fit of the data to the Paris14 
relation. 

 
1.3 Benefits of Study 
 
     The study will primarily benefit the safe operation of the turbine seal test 
facility.  Specifically: 
 
1.  The study will result in a damage tolerant approach to monitoring the growth 
 of cracks in the NASA disk bolt holes through scheduled eddy-current 
 inspection. 
2. The total life of the NASA disk, crack initiation and crack growth, will be 

statistically calculated to support the inspection interval placed on the bolt 
holes. 
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2. Background on Grainex Mar-M 247 
 
2.1 Grainex Mar-M 247 Material      
 

Grainex Mar-M 247 is a class of cast nickel-based superalloys (Figure 2.1) 
and is primarily used in gas turbine engine components such as turbine blades, 
turbine disks, burner cans, and vanes.1  In general 90 percent of superalloys 
produced are used for gas turbine engines and approximately half of the engine 
weight is composed of nickel-based superalloys. 1 Superalloys are well suited for 
jet engine applications where they generally operate from 540°C to over 80% of 
their melting temperature.1  Additionally they retain their strength at these 
temperatures while providing creep and corrosion resistance.1 
 

 
Figure 2.1  Grainex Mar-M 247 is part of the family of superalloys 

represented by the dashed line. 1 
 
2.2 Material Processing and Microstructure 
 
     The Mar-M 247 alloy (Table 2.1) was developed in the 1970s by Danesi and 
Thieleman. 2  It is manufactured by melting and investment casting under vacuum 
In contrast to wrought superalloys, cast superalloys exhibit improved creep and 
rupture characteristics due to coarser grain sizes and alloy segregation.  
However, the larger grain sizes reduce ductility and lower cyclic fatigue life.3  
Also, columnar grains are found in thin sections such as turbine disks (Figure 
2.2) and blades resulting in material properties inconsistent with those found in 
the disk hub. 
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Table 2.1  Nominal chemical composition of Mar-M 247 alloy 4 

Element Wt% Element Wt% Element Wt% 
Co 10 Ta 3 C 0.16 
W 10 Hf 1.5 Zr 0.05 
Cr 8.2 Ti 1 B 0.015 
Al 5.5 Mo 0.6 Ni Balance 

 
 
 
 
 

 
Figure 2.2  Conventionally cast Mar-M 247 macrostructure showing coarse, 

columnar oriented grains.4 
 
 
     The NASA Mar-M 247 test rotor was made through the Grainex investment 
casting process.5  The Grainex process was developed by Howmet Turbine 
Components Corporation in the early 1980s and uses traditional investment 
casting processes in combination with mold-agitation during solidification to 
produce an equiaxed grain structure that results in more consistent material 
properties throughout the casting (Figure 2.3).4 
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Figure 2.3  Grainex cast Mar-M 247 macrostructure showing fine, equiaxed 

grains.4 
 
 
Investment casting is preferred over wrought processing for complex turbine 

engine components in that it produces near net shape structures.  Following 
solidification, the casting is mechanically separated from its ceramic mold and 
then radiographically or ultrasonically inspected for cracks, pores or tears which 
would negatively affect material properties.  Prior to final machining, the casting 
is hot-isostatic pressed (HIP) at 1185°C and 172 MPa for 4 hours, solution 
treated at 1185°C for 2 hours, and aged at 871°C for 20 hours.  The HIP process 
reduces the porosity inherent in the investment casting process.  Minimizing 
porosity reduces possible crack initiation sites and improves material fatigue life.  
Solution treating the casting homogenizes the microstructure to an austenitic 
FCC γ-phase matrix.  Strengthening of the alloy is derived from solid solution 
strengthening constituents including Co, Cr, Mo, W, and Ta.1  The aging process 
precipitates a coherent γ’ phase [Ni3,(Al,Ti)] which gives primary strengthening 
and improves tensile and creep-rupture properties.1 
     A number of sub-structures within the Grainex Mar-M 247 material serve 
major roles in strengthening or weakening the material.  Metal carbides (MxCy) 
serve to strengthen grain boundaries, strengthen the γ matrix through 
precipitation of fine carbides, and combine with elements to promote phase 
stability.1  For example, discontinuous M23C6 (M = Cr, Ni-Co, Mo, W) provides 
grain boundary strengthening by inhibiting the movement of grains thereby 
improving rupture strength.  Borides serve as grain boundary strengtheners 
particularly under creep rupture loading.6  Surface oxidation resistance is 
provided by scale build-up of Cr2O3 and Al2O3.  However, metal carbide failure 
may occur by fracture of the M23C6 particle or by decohesion.1  Topologically  
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closed-pack phases are harmful structures that deplete refractory elements 
which ultimately reduces creep rupture strength.  Found primarily as grain 
boundary carbides they appear as long plates or needles and contribute to 
premature cracking due to their hard, brittle nature.6 

 
2.3 Material Properties 
 
2.3.1 Literature Review 

 
While much has been written on Mar-M 247, only a small number of 

references have been found on Grainex Mar-M 247 that report tensile, strain-life, 
and fatigue crack growth data.  

 
2.3.2  Tensile Behavior 

 
Tensile properties determined from specimens taken from the rim of turbine 

disks show that Grainex Mar-M 247 is equal to if not better than the 
conventionally cast Mar-M 247 through 760°C (Figure 2.4).4  The ultimate tensile 
strength for Grainex Mar-M 247 is 1034 MPa at room temperature and increases 
slightly through 760°C while that for conventionally cast Mar-M 247 is no higher 
than 1000 MPa.  Also, the 0.2% offset yield strength for Grainex Mar-M 247 is 
828 MPa from room temperature through 760°C while that for conventionally cast 
Mar-M 247 begins to fall off after 500°C.  Finally, reduction in area and 
elongation for both Grainex and conventionally cast Mar-M 247 decrease above 
482°C.  Other sources cite comparable tensile properties for Grainex Mar-M 
247.7,8,9  Macha et. al. and Kaufman report Young’s Modulus decreasing with 
increasing temperature (Table 2.2). 
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Figure 2.4  Comparison of tensile properties of Grainex Mar-M 247 and 

conventionally cast Mar-M 247.4 
 
 
 
 
 

Table 2.2  Comparison of Young's modulus for Grainex 
 Mar-M 247 at various temperatures 

 Source 

 Macha et al. 7 Kaufman8 

Temp [°C] E  [MPa] E  [MPa] 

21 226 n/a 

204 n/a 210 

427 205 203 

760 n/a 175 
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2.3.3  Strain-Life Behavior 
 
     Strain-life data reported by Macha et al. at 427°C and Rε = -1 (Figure 2.5)7 for 
Grainex cast Mar-M 247 show a slight increase in cyclic fatigue life at the -3σ 
property line at higher strain ranges when compared to conventionally cast  
Mar-M 247.  Kaufman reports Grainex Mar-M 247 data for Rε = 0 at 204°C, 
427°C, and 760°C (Figure 2.6).8  As expected, lower cyclic lives result from 
increasing temperature for a constant strain range.  Finally strain-life data 
reported by  Helmink et al. for Grainex Mar-M 247 at 538°C (Figure 2.7)10  is 
slightly better in comparison with directionally-solidified Mar-M 247. 
 
 
 

 
Figure 2.5   Grainex Mar-M 247 strain-life data at 427°C per Macha et al.,   

Rε = -1.7 
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Figure 2.6  Grainex Mar-M 247 strain-life data per Kaufman at Rε = 1.8 

 
 

 
Figure 2.7  Strain-Life data per Helmink et al. at 538°C.10 
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2.3.4  Fatigue crack-growth data 
 
     Grainex Mar-M 247 shows a lower fatigue crack-growth rate for a constant 
stress intensity range than both conventionally cast Mar-M 247 at 427°C (Figure 
2.8), as reported by Macha et al.7 and for Inco 713LC at 538°C (Figure 2.9) as 
reported by MacIntyre et al.11  Finally, the Grainex Mar-M 247 fatigue crack 
growth rate compares similarly with those of materials CM 681 and CM 681A at 
538°C (Figure 2.10), as reported by Helmink et al.10 However no fatigue crack-
growth data were available at 649°C and greater than 300 m/s operating 
condition which is needed to determine a critical crack length for the NASA 
Grainex Mar-M 247 disk. 
 
 
 
 

 
Figure 2.8  Comparison of Grainex Mar-M 247 and conventionally cast  

Mar-M 247 fatigue crack growth data per Macha et al. at 427°C.7 
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Figure 2.9  Comparison of Grainex Mar-M 247 and IN713LC fatigue crack-

growth data at 538°C per MacIntyre et al.11 
 
 
 

 
Figure 2.10   Comparison of Grainex Mar-M 247 data with CM681 and 

CM681A fatigue crack-growth data at 538°C per Helmink et al.10 
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3. Material Sectioning Plan and Material Characterization 
 
3.1 Sectioning Plan for the NASA Disk 
 

A sacrificial Grainex Mar-M 247 NASA disk was cut-up for tensile, strain-life, 
and fatigue crack growth specimens following general guidelines: 

 
1.   A cross-section of the NASA disk from rim to centerline was used for        
 metallurgical examination. 
2.   Tensile and strain-life specimens were taken in a randomized fashion        
 throughout the hub and web sections (Figure 3.1a and Figure 3.1b). 
3.   Fatigue crack-growth specimens were taken as close to the bolt holes as 

possible since crack-initiation and growth were a concern within the bolt     
hole surfaces (Figure 3.1a) over repeated cycling at maximum operating 
conditions. 

 
 
 

 
Figure 3.1a   NASA disk specimen identification.  Nomenclature:  ##T = 

Tensile, ##K = fatigue crack-growth, ##X = extra, ##L = strain-
life. 
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Figure 3.1b  NASA disk specimen identification.  Nomenclature:  ##T = 

Tensile, ##K = fatigue crack-growth, ##X = extra, ##L = strain-
life. 

 
 
A total of four tensile specimens were also taken from the hub and web 

sections of the NASA disk.  From statistical experimental design, 15 specimens 
were made for each strain-ratio (Rε = 0 and Rε = -1) with 3 repeats at each of 5  
strain-ranges1.  This complied with ASTM E606 suggested use of a minimum of 
10 specimens to generate strain-life curves2.  Minimum suggested strain-life 
specimens and percent replication were also followed per ASTM E739 and 
ASTM STP 588.  Specifically, the ‘design allowables’ suggest a minimum of 12 to 
24 strain-life specimens and a 50 to 75% replication.  Thus, fifteen specimens 
with 3 repeats at 5 strain levels give a percent replication of 67% (ASTM STP 
588):3,4 
 
 % replication  = 100 [1 – (number of strain levels /total number of  
  specimens)]    
   Eqn.  3.1 
 
Finally, 8 fatigue crack growth (FCG) specimens were electro-discharged 
machined (EDM) near the bolt holes of the NASA disk.   
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3.2 Material Characterization 
 
3.2.1 Objectives 
 
     The metallurgical examination addressed the microstructure uniformity from 
the hub center to the rim of the NASA disk.  Although the Grainex process gives 
a uniform, equiaxed grain structure resulting in uniform material properties, the 
relative difference in thickness between the hub and rim sections may cause the 
grain structure to vary.  This is due to the relative cooling rates, during disk 
processing, from the thickest portion of the disk at the hub (slowest cooling) to its 
thinnest portion at the rim (fastest cooling).  This may result in varying material 
properties.  In a conventionally cast disk, differences in microstructure have 
resulted in varying tensile, strain-life, and fatigue crack-growth properties. 5  This 
was shown previously in Figure 2.4.  Also, Figure 3.2 shows the variability in 
dynamic modulus for test specimens taken from different orientations from a 
conventionally cast disk of Mar-M 247.  The data is compared to Grainex Mar-M 
247 which shows minimal orientation effects on dynamic modulus.  The effect of 
microstructural differences between Grainex and conventionally cast Mar-M 247 
on fatigue strain life and fatigue crack growth was shown previously in Chapter 2 
(Figure 2.5 and Figure 2.8).   
 
 

 
Figure 3.2  Comparison of the dynamic modulus of Grainex Mar-M 247 and 

conventionally cast Mar-M 247 specimens removed in the axial, 
radial, tangential and 45° off-axis orientation.5  
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The metallurgical examination addressed this concern for uniformity in 
microstructure specifically by: 
 
1. Qualitatively assessing the differences in grain size, structure, and orientation 

from the NASA disk hub to rim. 
2. Determining the extent of porosity in the microstructure from the hub to the 

rim of the NASA disk. 
 
3.2.2 Procedure 
 
Chord-Slice Preparation 
     A chord slice of the NASA disk was electro-discharge machined for the 
metallurgical examination.  This included the two halves of the hub section, and 3 
sections that accounted for the web and rim of the NASA disk (Figure 3.3 and 
Figure 3.4).  

 

 
Figure 3.3  Cut-up and orientation of web and rim metallurgical specimens. 

b-b 

c-c 

d-d 

e-e 

f-f 
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Figure 3.4  Cut-up and orientation of hub section metallurgical specimens. 

 
     The three web/rim pieces were mounted in Bakelite.  The hub sections were 
mounted on special fixturing and polished.  Polishing was performed following 
standard metallographic methods.  The etchant used was a mixture of acetic 
acid, nitric acid, deionized water and hydrofluoric acid (HF). 
 
Qualitative Assessment of Grain-Size 
     A light microscope was used to obtain photomicrographs of the 
microstructure.  The photomicrographs were qualitatively compared with respect 
to overall grain size and orientation.   
 
Qualitative Assessment of Porosity 

Porosity, as defined in Mil-Std-1907, is a specific type of indication.  Other 
types of indications include microstructural discontinuities such as inclusions, 
cracks, tears, cold shuts, microshrinkage, and phase segregation.  Grade A 
requirements were used per section Mil-Std-1907 Section 4.1.1 for a highly 
stressed rotating cast component at high temperature.6  Table 3.1 gives specific 
indications that were used for comparison.   
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Table 3.1  Mil-Std-1907 Grade A specifications for castings6 
 

Indication Criteria (mm) Criteria (inch)
Cracks reject Reject 
hot tears reject Reject 
cold shuts reject Reject 
non-metallic inclusions   
    max dia 0.79 0.031 
    min separation = 3x 2.36 0.093 
Shrinkage 6.35 0.250 
Microshrinkage   
    max dia 1.60 0.063 
    min separation = 3x 4.80 0.189 
phase segregation   
    Surface 3.18 0.125 
    Subsurface 6.35 0.250 
gas holes   
    max dia 0.79 0.031 
    min separation = 3x 2.36 0.093 

 
 
     Fluorescent dye penetrant inspection was performed on each chord slice 
following ASTM E1417, Method C, Level 4.7  Any oils, dirt, or dust on the 
specimens were removed with alcohol.  After air drying the specimens penetrant 
was applied and allowed to settle for 20 minutes.  Excess penetrant was carefully 
removed and a developer applied to highlight any possible indications. 
 
3.2.3 Results and Discussion of Chord Slice Examinations 
 
Discussion of Grain Size Results 
     The nominal grain size for Grainex Mar-M 247 is reported to range from  
0.18 mm to 1.6 mm depending upon relative material thickness at specific 
locations on cast wheels for engine components (Table 3.2).5 
 
 

Table 3.2  Grain sizes in various sections of Grainex  
cast integral wheels5 

  Hub Rim Airfoil 
Nominal Diameter (mm) 

(range-mm) 
1.2 

1.0 – 1.6 
1.4 

1.2 – 1.6 
0.42 

0.18 – 0.67 

ASTM Macrograin  
Size Number M10 – M9 M10 – M9 M15 – M11.5 
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     Qualitative analysis of the grain size of the chord sections (Figure 3.3 and 
Figure 3.4) showed similar grain size and random orientation between chord 
sections (Figure 3.5 to Figure 3.7).  Grain size was estimated from the 
photomicrographs to be 1.3 to 1.9 mm (Figure 3.6).  The grain size was also 
comparable to reported data (Table 3.2).   
 
 
 
 
 
 

 
Figure 3.5  Grainex Mar-M 247 rim chord slice (S4B-1) at 16x. 
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Figure 3.6  Grainex Mar-M 247 web chord slice (S4C-1)  at 16x. 

 
 

 
Figure 3.7  Grainex Mar-M 247 hub cross-section (Bore1-2) at 16x. 
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     A major difference in microstructure was observed within the grains where 
secondary dendritic arm spacings (SDAS) became increasingly larger from the 
rim to the hub section.  The smallest SDAS were found near the rim while the 
coarsest were found at the hub.  An exception was found at the NASA disk boss 
(see Figure 3.1b) where SDAS sizes were very similar to those found at the rim.   

These observations corroborate those observed by Howmet Turbine 
Components Corporation as shown in Table 3.3.5  SDAS was observed to 
become coarser from rim to hub (0.05-0.10 mm).  The increase in SDAS from rim 
to hub can be observed by comparing Figure 3.5 with Figure 3.6 and Figure 3.7. 

 
 

Table 3.3  Reported SDAS measurements for Grainex  
Mar-M 247 disk/blade sections5 

 Casting Process Hub Rim Airfoil 

Grainex 0.10 0.05 0.03 

 
 
Discussion of Fluorescent Penetrant Inspection Results 

Based upon the criteria given in Table 3.1, no major indications were revealed 
by the fluorescent penetrant inspection (Figure 3.8).  Of particular importance is 
the fact that no indications were observed along the bolt hole surfaces. 

 
 

 

 
Figure 3.8  Typical fluorescent penetrant inspection results for hub section 

of Grainex Mar-M 247 NASA disk showing negligible indications. 
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4.   Fatigue Strain-Life Behavior of Grainex Mar-M 247 
 
4.1 Introduction 
 

The presence and growth of cracks inside the bolt holes of the Grainex Mar-M 
247 NASA disk due to cyclic operation can be monitored and the disk removed 
from operation to preclude catastrophic disk failure.  Both fatigue strain-life 
behavior and fatigue crack growth behavior will be used to determine a 
maintenance inspection interval for the bolt holes.  This section focuses on the 
fatigue strain-life behavior of Grainex Mar-M 247. 

Strain-life tests will be used to determine the cycles to crack initiation and 
cycles to failure of the Grainex Mar-M 247 material at maximum NASA disk 
operating conditions in the turbine seal rig facility.  Previous NASA disk analyses 
showed that the region adjacent the disk bolt hole just enters the plastic region of 
the stress-strain curve at its maximum operating temperature, pressure, and 
surface speed (816°C, 1724 KPa, and +300 m/s).1  Thus, a strain-based 
approach to fatigue is used to address the local yielding in the material. 
 The strain-life tests on the Grainex Mar-M 247 NASA disk will be compared to 
estimates by Tong and Steinetz1, estimates reported in the literature,2,3 
predictions using the Method of Universal Slopes and the Halford-Nachtigall 
Method.4  To predict fatigue strain-life using these methods, tensile tests were 
conducted at 649°C which is the local NASA disk bolt hole temperature at 816°C 
test air temperature. 
 
4.2 Materials and Methods:  Tensile Behavior 
 
Experiment 
     Tensile tests were performed at Mar-Test Inc. in Cincinnati, Ohio per ASTM 
E-8 and ASTM E-21 standards.  Tensile testing was conducted on a Mar-Test, 
Inc. hydraulic servo controlled test system5, using a box furnace for specimen 
heating (Figure 4.1).   Load was recorded using a load cell.5   Strain was 
recorded using a Mar-Test fused quartz extensometer with a linear variable 
differential (LVDT) for sensing deflection.  The resolution of the LVDT was the 
greater of 0.0001 m/m or 0.25% of the measurement (ASTM E83, Class B2).5   
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Figure 4.1  A typical tensile test set-up. 5 

 

 
Figure 4.2  Tensile test specimen geometry.6 

 
The tensile test specimen geometry was 3.56 mm in diameter by 50.8 mm in 

length per ASTM E-8 (Figure 4.2).  The gage diameter was constant and the grip 
region was threaded.  The gage section diameter of each specimen was 
measured at 21°C and gage markings were etched at the gage section at a 
spacing of 14.22 mm.  This distance is equal to the uniform section length minus 
the gage diameter.5 
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Figure 4.3  A sample tensile test plot.  English units are used. 

 
     A total of four tensile specimens were tested.  Thermocouples were 
positioned at the transition region to monitor the temperature.  Also, 
extensometer knife edges were positioned at the uniform gage section and held 
in place with springs.  Specimens were then heated to 649°C  ± 1% for testing.  
Tests were conducted at 649°C at a strain-rate of 2.8x10-4 s-1. 

For each specimen, plots of load versus strain were obtained (Figure 4.3).  
After the 0.2% strain was reached, the load rate was increased to finish the test 
quickly.  The final strain was thus not known; this is standard operating 
procedure for Mar-Test, Inc.5  
     Tensile properties were determined by Mar-Test from strip chart recorder data 
(Figure 4.3).  This included; Young’s Modulus, E, at 21°C and at 649°C; the 
ultimate tensile strength, σUTS; the 0.2% offset yield strength, σy(0.2%); percent 
reduction in area, %RA; and percent elongation, %EL.  To calculate E, σUTS, 
σy(0.2%), and %RA, the thermal expansion coefficient, α, for Grainex Mar-M 247 at 
649°C (3.32 x 10-6 m/m/°C) was used to determine the diameter of the gage 
section: 

 TDDD
CCCC

∆××+=
6492121649

α  Eqn.  4.1 

 where   D649°C = gage section diameter at 649°C [mm] 
  D21°C  = gage section diameter at 21°C [mm] 
 α649°C =  thermal expansion coefficient at 649°C [m/m/°C] 
 ∆T     =  temperature differential from 21°C to 649°C  [°C] 
 



 

NASA/TM—2005-213873 31 

E was obtained by manually identifying the slope of the initial load versus 
strain behavior for each specimen (Figure 4.3):   

 εε
σ CAP

E 649==  Eqn.  4.2 

 where σ = stress [MPa] 
 ε = strain [m/m] 
 P = load [N] 
 A649°C = gage section area at 649°C [m2] 
 
 
σUTS was calculated using the ratio of Pmax, and A649°C: 

 C
UTS A

P

649

max=σ  Eqn.  4.3 

 where Pmax = maximum load [N] 
 
σy(0.2%), was calculated using the ratio of the load at 0.2% offset strain, Pε=0.2%, 
and A649°C: 

 

( )
C

y A
P

649
%)2.0(

%2.0=
=

εσ  Eqn.  4.4 

The reduction in area, %RA was calculated using 

 
100% ×⎟⎟
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⎝
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=
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fi

A
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RA  Eqn.  4.5 

where Ai is the initial gage section area and Af is the final gage section area.                    
The percent elongation, %EL, was calculated using 

 
100% ×⎟⎟
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EL  Eqn.  4.6  

 where Lf = final gage section length [mm] 
  Li = initial gage section length [mm] 
 

For brittle materials, the engineering fracture stress, σf, can be substituted 

with the ultimate tensile strength, σUTS.7  Thus, the true fracture strength, f

~
σ , 

was estimated by :   

 ⎟
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⎜
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 Eqn.  4.7   (Ref. 7)   

     Similarly, the true fracture strain, f

~
ε , was estimated by: 
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 f

i
f

A
Aln

~
=ε  Eqn.  4.8  (Ref. 7)    

Fractographic Examination 
     Fracture surfaces from each of the four tested tensile specimens were 
examined by light stereomicroscopy and scanning electron microscopy.  Prior to 
scanning electron microscopy examination, the specimens were ultrasonically 
cleaned in acetone for 5 minutes, rinsed in alcohol, and then air dried.   

Scanning electron microscopy was performed in both secondary electron 
(SE) and backscattered electron (BE) modes.  SE mode was used to identify 
general fractographic features such as evidence of brittle or ductile fracture, 
including necking, and the presence or absence of shear lips while BE mode was 
used to identify the site of fracture initiation. 
 
4.3 Materials and Methods:  Fatigue Strain-Life Behavior 
 
Experimental 
     Fatigue strain-life tests were performed at Mar-Test Inc. in Cincinnati, Ohio 
per ASTM E-606 using Mar-Test, Inc. closed loop, servo-hydraulic test systems 
(Figure 4.4).  The extensometer system was identical to that used for the tensile 
tests.  Induction heating was utilized for tests at high temperature.   
 
 

 
Figure 4.4  Typical fatigue strain-life test set-up.5 
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Figure 4.5 Strain-life specimen geometry.8 

 
 

Table 4.1   Grainex Mar-M 247 strain-life test matrix.   
Specimen identifications refer to the NASA disk  

location where the specimens were obtained  
(Figure 3.1a and Figure 3.1b) 

Specimen Identification % Strain Range Rε  
66L,   86L,  CB1L 0.50 -1 
57L,   76L,  CA9L 0.58 -1 
47L, CA7L, CB8L 0.67 -1 
27L, CA4L, CB6L 0.78 -1 
15L, CA2L, CB3L 0.90 -1 
67L,   77L,  CA8L 0.50 0 
56L,   87L,  CB2L 0.58 0 
46L, CA1L, CB5L 0.67 0 
35L, CA3L, CB7L 0.78 0 
26L, CA6L, CB9L 0.90 0 

 
The specimen geometry for the strain-life tests followed recommended 

specimen geometry per ASTM E-606 (Figure 4.5). 9 
A total of 15 fatigue strain-life specimens were obtained from the sacrificial 

NASA disk.  The tests were conducted in air at 649°C at a strain ratio of Rε = -1 
and    Rε = 0 with a frequency of 0.33 Hz using a triangular waveform.  Five strain 
ranges were tested (0.50%, 0.58%, 0.67%, 0.78%, and 0.90%) with three 
repeats at each strain range (Table 4.1).   

Prior to testing the specimen diameter, D21°C for each specimen was 
measured and Ai was calculated.  Using α649°C for Grainex Mar-M 247,  
(3.32 x 10-6 /°C), D649°C and A649°C were calculated.  Chromel-alumel 
thermocouples were then attached at both ends of the gage section for 
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temperature control with reference thermocouples attached at the ends of the 
specimen in the grip region.5  A thermocouple was also attached to the center of 
the test section to determine the temperature at that point.  An optical pyrometer 
was used to compare the center thermocouple temperature with the temperature 
of the rest of the uniform section.  Adjustments were made to the induction 
heating coils such that the temperature deviation in the uniform section was less 
than ±1%.5  

The specimen was strained elastically to obtain the P versus ε behavior for 
calculating E at 21°C.  The specimen was then heated to the test temperature of 
649°C to within ±1%.  P versus ε behavior was again recorded to calculate E at 
649°C.  Strain-controlled fatigue testing was then performed at 0.33 Hz with a 
triangular waveform.   

Plots of load versus strain were recorded at regular intervals during cycling.  
Cycles to crack initiation, Ni, was subjectively determined when a rapid change in 
the load versus time history plot occurred (Figure 4.6).5   Tests were conducted 
until failure, Nf, which was defined as either specimen fracture or a change in the 
maximum stress to 30 percent of its original value.     
     For each specimen, the following parameters were calculated at the start of 
the test upon reaching the test strain range:  cycle, N; stress range, σ∆ ; 
maximum stress, σmax; and minimum stress, σmin.  At approximately half the 
specimen life, additional parameters were calculated: elastic modulus, E; the 
elastic strain range, ∆εel; and the inelastic strain range, ∆εin.  ∆ε, ∆εel, and ∆εin 
were determined from the load versus strain hysteresis plots following standard 
methods.7  Ni and Nf were also obtained from each test.   

 
 

 
Figure 4.6  Example of crack initiation point in load, strain time history 

plot.5 
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Statistics 
 
 The fatigue strain-life results were evaluated following a simple linear model 
in log-log coordinates: 
 

 ( )ζε∆= %ZN f  Eqn. 4.9 

 
where the constant, Z, and exponent, ζ, were to be determined and %∆ε is the 
percent total strain range.  Thus,  
 

 ( ) ( )εζ ∆+= %logloglog ZN f  Eqn. 4.10 

 
Linear regression analysis of the log-log transformed fatigue strain-life data 

was then conducted to determine Z and ζ for both Rε = 0 and Rε = -1.  The linear 
regressions were tested for significance based upon the null hypothesis method 
at the 99.95% confidence level.10  The coefficient of determination, R2, was also 
calculated.  Normal distribution of the data was checked, data removed, and the 
regression revised as necessary.10  A test for lack-of-fit was done to check 
whether the linear model was correct.10  Also the Foster-Burr test was performed 
to check for outliers in the data. 10  Finally 99.95% prediction intervals were 
calculated for both data sets. 10     
 
Method of Universal Slopes 

The Manson-Hirschberg Method of Universal Slopes11 (MUS) was used to 
estimate strain life with zero mean stress based only upon tensile properties: 

  

 
inel εεε ∆+∆=∆

 
 Eqn. 4.11  (Ref. 11)   

 
( ) ( ) c

f
b
f NCNC 21 +=∆ε

 
Eqn. 4.12  (Ref. 11)
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ε
 

Eqn. 4.13  (Ref. 11)
 

 

 where  C1, C2   =  constant coefficients 
  Nf0  =  cycles to failure under zero mean stress 
  εf     =  true fracture ductility 

       =  ⎟
⎠
⎞

⎜
⎝
⎛

− RA100
100ln  Eqn.  4.14 (Ref. 11) 

  
Average tensile properties were calculated based upon the four tensile tests 

performed.  ∆εel and ∆εin were calculated by inserting the averaged tensile 
properties into Eqn. 4.13.  ∆ε is the sum of ∆εel (first term) and ∆εin (second term) 
in Eqn. 4.13.  Thus, Nf0 can be estimated based upon a given ∆ε. 
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Halford-Nachtigall Method 
To estimate the effect of mean stress on cyclic life, the Halford-Nachtigall 

Method was used with the MUS:   
 

 σVNN b
f

b
fm −= −−

0   Eqn. 4.15  (Ref.  4)  

 
 where Nfm = cycles to failure in presence of mean stress 
  b  = fatigue strength exponent  
  Nf0 = cycles to failure under zero mean stress 
  Vσ = ratio of mean stress to stress amplitude 
 
The relationship is derived from: 
 

 ( ) b
fmmf N −−=∆ σσσ '2  Eqn. 4.16  (Ref. 4)   

 where '
fσ  = fatigue strength coefficient [MPa] 

  σm = mean stress [MPa] 
 
 
This is Morrow’s original equation (Eqn. 4.14) except that Nfm is used instead of 
2Nfm. 

The value for b was -0.12 from the MUS.  Nf0 from Eqn. 4.14 was calculated 
using the ratio of the inelastic strain range and the elastic strain range from the 
MUS at ratios of 0.3, 0.2, 0.1, 0.08, 0.05, and 0.02.  Veff was substituted for Vσ in 
Eqn. 4.14 (Ref. 4): 

where σσ
σ

kVkV
a

m
eff ==  Eqn. 4.17  (Ref. 4)    
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70exp
el

ink
ε
ε  Eqn. 4.18  (Ref.  4)  

  Veff = effective ratio of mean stress to stress    
    amplitude 
  k = transfer function 
  σa = stress amplitude [MPa] 
 
 
The ratio of the mean stress to stress amplitude is assumed to be unity at the 
start of each strain-life test.  This assumption is correct if the stress-strain 
hysteresis loop is completely elastic.  However, with increasing cyclic plasticity, 
mean stress relaxation may occur and the ratio of the mean stress to stress 
amplitude would decrease. 
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Finally, the variation of mean stress and range of stress was plotted against 
increasing strain amplitude at the specimen half-life. 
 
Morrow Strain Life Equation 
 The Morrow Strain-Life equation was used to model Rε = -1 strain-life data: 
 

 
( ) ( )cff

b
f

f
a NN

E
22

2
'

'

ε
σ

εε
+==

∆    Eqn. 4.19  (Ref.12)   

 where εa = strain amplitude 

  
'
fσ  = fatigue strength coefficient [MPa] 

  b = fatigue strength exponent  

  
'
fε  = fatigue ductility coefficient 

  c = fatigue ductility exponent 
 
The coefficients and exponents of the Morrow strain-life equation were 
determined as follows:13 
 

1. A plot was made on log-log coordinates of 
2
eε∆  versus fN2 .  By definition, 

( )bff N
E

2
'σ

 is equal to 
2
eε∆ .  Thus, the y-intercept of the regression at 12 =fN  

is equal to 
E
f
'σ

.  '
fσ  was determined given E.  Finally, the slope of the 

regression is equal to b. 

2. A plot was made on log-log coordinates of 
2
pε∆

 versus fN2 .  By definition, 

( )cff N2'ε  is equal to 
2
pε∆

.  Thus, the y-intercept of the regression at 12 =fN  

is equal to the '
fε .  Finally, the slope of the line is equal to c.   

 
 
Modified Morrow with Mean Stress Effects 

The Modified Morrow equation was used to account for mean stress effects in 
the Rε = 0 tests: 
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The coefficients ( '
fσ , E, '

fε ) and exponents (b and c) initially used were 
calculated from the Morrow Strain-Life Equation (Eqn. 4.18).  For each of the 30 
fatigue strain-life tests, the mean stress was determined by the average of the 
maximum and minimum stress values at the cyclic half-life.  εa was then 
calculated for each specimen.  Finally, the coefficients and exponents of the 
Modified Morrow equation were optimized by minimizing the residual between  
the experimental strain amplitude and the calculated strain amplitude from     
Eqn. 4.19.  Also, constraints were imposed on exponents b and c as follows: 
 

 -0.12 ≤ b ≤ -0.05 Eqn.  4.21 (Ref. 7) 
 

 -0.9 ≤ c ≤ -0.5 Eqn.  4.22 (Ref. 7) 
 
Using these optimized coefficients and exponents, the Modified Morrow equation 
was then used to plot strain amplitude versus cycles to failure along lines of 
constant mean stress with values ranging from -345 MPa to 690 MPa.  This plot 
was compared to experimental data. 
 
Fractographic Examination 

The fracture surfaces of fatigued specimens were cleaned in acetone, alcohol 
rinsed, and air dried to facilitate fractographic examination.      

Surfaces were examined using light stereomicroscopy and scanning electron 
microscopy (SEM) using secondary electron (SE) and backscattered electron 
(BE) modes to determine crack initiation sites. 
 
4.4 Results and Discussion:  Tensile Behavior 
 
Properties 

Average tensile properties of four tensile tests for the Grainex Mar-M 247 
material are shown in Table 4.2.  The ultimate tensile strength and 0.2% offset 
yield stress were found to be 1064 and 821 MPa, respectively. 

 
 

Table 4.2  Tensile test results for Grainex Mar-M 247 at 649°C 

 E [GPa] σUTS [MPa] σy(0.2%) [MPa] %RA %EL f

~
σ [MPa] f

~
ε  

Average 194.3 1064.4 821.0 16 6.9 1268 0.177
Standard 
deviation 12.6 19.8 18.3 1 1.0 31 0.015
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The Grainex Mar-M 247 tensile properties determined from the sacrificial NASA 
disk were within 5 to 10% of values reported from literature (Table 4.3).2,14  The 
exception was in the %RA data where the sacrificial NASA disk %RA was 30 to 
40% higher than that reported in the literature.  The higher values were most 
likely due to a slight amount of necking observed in the gage sections of the 
tensile test specimens. 
 
 

Table 4.3  Comparison of average Grainex Mar-M 247  
tensile properties at 649°C with literature 

 NASA Disk*      Kaufman*,2 Howmet14    
No. Samples 4 2 N/A 

E                [GPa] 194.3 N/A 179.3 

σUTS            [MPa] 1064.4 1011.5 1027.3 

σy(0.2%)        [MPa] 821.0 799.1 827.4 

%RA 16 9.7 10.7 

%EL 6.9 7.1 7.0 

* average data 

 
Fractographic Examination 

Crack initiation sites were observed by light stereomicroscopy at the surface 
of the gage section of the specimens.  Little if any necking of the gage section 
was observed on the tensile specimens.  Shear lips were not observed.  The 
overall fracture surface appearance was consistent with brittle fracture (Figure 
4.7).    Examination of the fracture surfaces by SEM in BE mode did not reveal 
any evidence of interior initiation, supporting the visual observations that fracture 
initiated at the surface (Figure 4.8). 
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Figure 4.7  Typical SEM (SE mode) image of Grainex Mar-M 247 tensile 

specimens conducted at 649°C.  
 
 

 
Figure 4.8  Typical SEM (BE mode) image of Grainex Mar-M 247 tensile 

specimens conducted at 649°C (same fracture surface as in 
Figure 4.7). 
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4.5 Results and Discussion:  Fatigue Strain-Life Behavior 
 
Rε = -1   

Ni and Nf were determined for each of the Rε = -1 fatigue strain-life tests at 
649°C (Table 4.4).  

 
 

Table 4.4  Grainex Mar-M 247 fatigue strain-life test results 
 at 649°C, Rε = -1.  Specimen identifications refer to the  

location on the NASA disk where the specimens  
were obtained (Figure 3.1a and Figure 3.1b) 

Specimen 
Identification %∆ε Ni Nf 

66L 0.50 * 429420 
86L 0.50 * 120171 

CB1L 0.50 * 110545 
57L 0.58 115737 116335 
76L 0.58 31362 31486 

CA9L 0.58 43555 44313 
47L 0.67 4618 6624 

CA7L 0.67 6836 8018 
CB8L 0.67 3175 5231 
27L 0.78 1464 1668 

CA4L 0.78 1004 1586 
CB6L 0.78 1773 2279 
15L 0.90 192 484 

CA2L 0.90 393 875 
CB3L 0.90 317 451 

*Switched to load-control after approximately 100,000 
cycles.  No crack-initiation life was available. 

 
Linear regression analysis of Eqn. 4.9 for the Rε = -1 total strain life versus Ni  

data resulted in an exponent, ζ, of -11.49 and a coefficient, Z, of 75.86 with       
R2 = 0.94. The exponent and coefficient were significant to a 99.95% confidence 
level.  The residuals were normally distributed.  A histogram of the residuals 
found one possible outlier (57L) and subsequent linear regression analysis 
resulted in an exponent, ζ, of -10.55 and a coefficient, Z, of 91.20 with R2 = 0.96.  
The exponent and coefficient were again significant to a 99.95% confidence 
level.  The lack-of-fit test showed that the linear model was acceptable to a 
99.9% confidence level.  The Foster-Burr test showed no outliers in the data to a 
99% confidence level.  Prediction intervals were calculated to a 99.95% 
prediction level (Figure 4.9). 
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Figure 4.9   Crack initiation strain-life results for Grainex Mar-M 247,         

Rε = -1, 649°C, triangular waveform, 0.33 Hz.  By convention, Ni 
was plotted on the abscissa while %∆ε was plotted on the 
ordinate. 

 
Linear regression analysis of Eqn. 4.9 for the Rε = -1 total strain life versus Nf  

data resulted in an exponent, ζ, of -10.10 and a coefficient, Z of 165.96 with      
R2 = 0.95.  The exponent and coefficient were significant to a 99.95% confidence 
level.  The residuals were normally distributed.  A histogram of the residuals 
found three outliers (57L, 66L, and CA2L) and subsequent linear regression 
analysis resulted in an exponent, ζ, of -9.53 and a coefficient, Z, of 165.96 with 
R2 = 0.99.  The exponent and coefficient were again significant to a 99.95% 
confidence level.  The lack-of-fit test showed that the linear model was 
acceptable to a 99.9% confidence level.  The Foster-Burr test showed no outliers 
in the data to a 99% confidence level.  Prediction intervals were calculated to a 
99.95% prediction level (Figure 4.10).   

A comparison of the outliers found in the Rε = -1 data (Specimens 66L, 57L, 
and CA2L) with their respective strain-ranges revealed the following: 

 
1.  Crack depth was approximately 1/3 of the gage cross-section regardless 

of the strain-range. 
2. The outlier specimens had a 2x to nearly 4x longer life, Nf, than specimens 

tested at the same strain range (Table 4.4).  Subsequent life predictions 
would have been non-conservative. 

3. Comparing SEM of specimens at the same strain range showed that the 
outlier specimens had fewer crack initiation sites and that crack growth 
was limited to fewer facets. 
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Figure 4.10   Cycles to failure strain-life results for Grainex Mar-M 247,        

Rε = -1, 649°C, triangular waveform, 0.33 Hz.  By convention, Nf 
is plotted on the abscissa while %∆ε is plotted on the ordinate. 

 
The NASA Grainex Mar-M 247 Rε = -1 strain-life data at 649°C was compared 

with available literature at 427°C (Figure 4.11).  The data showed that the cyclic 
life of the Grainex Mar-M 247 sacrificial NASA disk material was similar to that 
reported by Macha et al.3  Specifically, data reported by Macha et al. were  
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Figure 4.11   Comparison of NASA Grainex Mar-M 247, Rε = -1 strain-life 

data with literature.3 
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comparable with the sacrificial NASA disk data at the design point of 0.5% ∆ε.  It 
should be noted that the values reported by Macha et al. in the early 1980s were 
when the Grainex process was first introduced and that refinements in the 
process (i.e., the Grainex examined in this study) appear to have led to equal if 
not improved strain-life at higher temperatures.  Normally, at higher temperatures 
the strain-life decreases for identical strain ranges.  However it was seen that the 
strain-life at 649°C for the NASA disk Grainex Mar-M 247 material is equal to if 
not higher than that reported by Macha et al. data at 427°C. 

 
Rε = 0  

Ni and Nf were determined for each of the Rε = 0 fatigue strain-life tests at 
649°C (Table 4.5). 
 

 
Table 4.5 Grainex Mar-M 247 strain-life test results at 649°C, Rε = 0.  

Specimen identifications refer to the location on the NASA disk  
where the specimens were obtained (Figure 3.1a and Figure 3.1b). 

Specimen 
Identification %∆ε Ni Nf 

67L 0.50 * 127523 
77L 0.50 25917 26939 

CA8L 0.50 9557 10697 
56L 0.58 12266 12566 
87L 0.58 2450 2842 

CB2L 0.58 5910 7970 
46L 0.67 2056 3056 

CA1L 0.67 3114 3842 
CB5L 0.67 1322 2234 
35L 0.78 585 723 

CA3L 0.78 792 1352 
CB7L 0.78 680 1254 
26L 0.90 513 889 

CA6L 0.90 ** 1142 
CB9L 0.90 *** 554 

*  Switched to load control after approximately 100,000 cycles. 
** Recorder malfunction.  Ni occurred between 415 and 847. 
***Recorder malfunction.  Ni occurred between 295 and 500 cycles. 

 
 
 

Linear regression analysis of Eqn. 4.9 for the Rε = 0 total strain life versus Ni 
resulted in an exponent, ζ, of -6.48 and a coefficient, Z of 162.18 with R2 = 0.86. 
The exponent and coefficient were found to be significant to a 99.95% 
confidence level.  The residuals were found to be normally distributed.  A 
histogram showed no outliers.  The lack-of-fit test showed that the linear model 
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was acceptable to a 99.9% confidence level.  The Foster-Burr test showed no 
outliers in the data to a 99% confidence level.  Prediction intervals were 
calculated to a 99.95% prediction level (Figure 4.12). 
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Figure 4.12   Crack initiation strain-life results for Grainex Mar-M 247, Rε = 0, 

649°C, triangular waveform, 0.33 Hz.  By convention, Ni was 
plotted on the abscissa while %∆ε was plotted on the ordinate. 

 
Linear regression analysis of Eqn. 4.9 for the Rε = 0 total strain life versus Nf 

resulted in an exponent, ζ, of  -6.26 and a coefficient, Z of 295.12 with R2 = 0.80.  
The exponent and coefficient were found to be significant to a 99.95% 
confidence level.  The residuals were found to be normally distributed.  A 
histogram of the residuals found two possible outliers (67L and CA6L) and 
subsequent linear regression analysis resulted in an exponent, ζ, of -5.62 and a 
coefficient, Z, of 316.23 with R2 = 0.87.  The exponent and coefficient were again 
significant to a 99.95% confidence level.  The lack-of-fit test showed that the 
linear model was acceptable to a 99.9% confidence level.  The Foster-Burr test 
showed no outliers in the data to a 99% confidence level.  Prediction intervals 
were calculated to a 99.95% prediction level (Figure 4.13).  
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Figure 4.13   Cycles to failure strain-life results for Grainex Mar-M 247,       

Rε = 0, 649°C, triangular waveform, 0.33 Hz.  By convention, Nf 
is plotted on the abscissa while %∆ε is plotted on the ordinate. 

 

Testing at Rε = 0 and 649°C addressed the actual localized conditions the 
Grainex Mar-M 247 NASA disk bolt holes encounter in the Turbine Seal Test 
Facility.  Specifically, the NASA disk is strained from a zero to maximum strain 
when the surface speed increases from zero to maximum during testing.  The  
-99.95% prediction interval (1 failure in 2000 samples) on cyclic life was chosen  
since it was more conservative than the mean cyclic life by a factor of 
approximately 10 (Table 4.6).  As expected, more data scatter was observed at 
the lower strain ranges.  Overall the cyclic life to crack initiation of the Grainex 
Mar-M 247 NASA disk bolt holes at the 0.5% design strain, Rε = 0, and -99.95% 
prediction interval was found to be 1100 cycles (Figure 4.12).  This was nearly 6 
times less than the cyclic life predicted from previous analyses1 and more than 
10 times less than the cyclic life extrapolated using the Rε = -1, Ni , -99.95% 
prediction interval data at %∆ε = 0.5 (see Table 4.6).  

Comparison of the NASA Grainex Mar-M 247 Rε = 0 strain-life data with 
reported data by Kaufman2 showed good agreement (Figure 4.14).  As observed, 
the NASA data at 649°C fell in between the 427°C and 760°C data reported by 
Kaufman.2   As expected, cyclic lives decreased with increasing temperature for 
a constant strain range.   
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Figure 4.14   Comparison of NASA Grainex Mar-M 247, Rε = 0 strain-life data 

with literature.2 
 

 
Table 6 summarizes the mean and -99.95% prediction cyclic life for both        

Rε = -1 and Rε = 0 data at both Ni and Nf at the 0.5% design strain range of the 
Grainex Mar-M 247 NASA disk (see also Figure 4.9, Figure 4.10, Figure 4.12, 
Figure 4.13). 

 
 
 

Table 4.6  Grainex Mar-M 247 mean and -99.95% cyclic life predictions at 
649°C, %∆ε = 0.5. 

 
Rε → -1 0 

Statistic → Mean -99.95% Mean -99.95% 

Ni (cycles) >100000 14500 14500 1100 

Nf (cycles) >100000 40000 15500 1600 

 
 
Method of Universal Slopes 

The estimated Nf was plotted against ∆ε for the Grainex Mar-M 247 material 
using tensile data (Table 4.2) as input for the MUS (Figure 4.15).  The plastic and 
elastic strain lines were also plotted.  Nt was found to be 400 cycles to failure. 
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Figure 4.15   Method of Universal Slopes equation using Grainex Mar-M 247 

Tensile Data at 649°C. 
 
 
Halford-Nachtigall Method 

Comparison of the Halford-Nachtigall Method with the MUS, Rε = 0 data, and  
Rε = -1 data for the Grainex Mar-M 247 material is shown (Figure 4.16). 
 

 
Figure 4.16   Comparison of MUS, Halford-Nachtigall method, and data for 

Grainex Mar-M 247 at 649°C. 
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Assuming the ratio of mean to alternating stress was equal to 1 at the start  
of the strain-life tests, Vσ (Eqn. 4.15) was compared at the beginning and 
approximate half-life for each test (Table 4.7).  The variation of mean stress and 
range of stress was then compared with increasing strain amplitude Figure 4.17).  
Point P1 through point P2 defines elastic behavior.  Point P2 defines where the 
mean stress and range of stress are equal.  Point P3 defines the point of zero 
mean stress.  Finally, point P3 to P4 is the region of zero mean stress. 

 
Table 4.7 Comparison of Vσ at Nf = 1 and Nf/2 for Grainex  

Mar-M 247 at 649°C, Rε = 0 
at N = 1 at Nf/2 at Nf/2 strain 

range Vσ σm 
[MPa] 

σa 
[MPa] Vσ 

0.50 1 344.1 463.3 0.74 
0.50 1 281.0 472.7 0.59 
0.58 1 295.1 513.7 0.57 
0.58 1 247.9 562.3 0.44 
0.58 1 265.8 556.1 0.48 
0.67 1 227.5 598.5 0.38 
0.67 1 206.9 600.6 0.34 
0.67 1 180.6 608.1 0.30 
0.78 1 100.3 745.0 0.13 
0.78 1 153.8 669.5 0.23 
0.78 1 106.9 706.7 0.15 
0.90 1 88.6 734.7 0.12 
0.90 1 60.0 781.2 0.08 

 

 
Figure 4.17   Variation of mean stress and range of stress with strain 

amplitude at Nf/2 for Grainex Mar-M 247 at 649C, Rε = 0.15 
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Comparison between MUS, Halford-Nachtigall, and Data   
Both the MUS and the Halford-Nachtigall method provide a means to predict 

fatigue strain-life by use of only tensile data.  It was expected that the MUS would 
over-predict the Rε = 0 data (Figure 4.16) since the MUS is generally used in 
predicting Rε = -1 data.  At the design point of 0.5% total strain, the MUS 
predicted Nf0 at 100,000 cycles.  This is 5 times greater than the average Rε = 0 
data at 0.5% total strain of approximately 20,000 cycles.  In comparison, the 
Halford-Nachtigall method predicted a life of approximately 23,500 cycles.  Thus, 
a more accurate prediction was found at the 0.5% total strain design point using 
only tensile data and modifying the MUS with the Halford-Nachtigall Method to 
account for mean stress effects. 
 
Morrow Strain-Life Equation  

'
fσ  and b were determined from a plot of 

2
elε∆  versus 2Nf (Figure 4.18).  A 

linear regression of the Rε = -1 data resulted in a y-intercept at 12 =fN  of -2.09 in 

log-log coordinates.  In linear coordinates the y-intercept was 31013.8 −×  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=
E
f
'σ

.  

Given an average E of 186 GPa, calculated from the Rε = -1 data, '
fσ  was 

calculated as 1510 MPa.  The fatigue strength exponent, b, was -0.0928.   
 

 
Figure 4.18   Grainex Mar-M 247 elastic strain-amplitude data, Rε = -1, 649°C. 
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 '
fε  and c were determined from a plot of 

2
inε∆

 
versus 2Nf (Figure 4.19).   A 

linear regression of the Rε = -1 data resulted in a y-intercept of -1.78 in log-log 
coordinates.  In linear coordinates the y-intercept was 0.0166 (= '

fε ).  The fatigue 
ductility exponent, c, was -0.628. 
 
 
 
 

 
Figure 4.19   NASA Grainex Mar-M 247inelastic Strain-Amplitude Data,        

Rε = -1, 649°C. 
 
 
 
 
Thus, the Morrow strain-life equation was determined to be 
 
                  ( ) ( ) 628.00928.03 20166.021013.8 −−− +×= ffa NNε  Eqn.  4.23 

 
and was compared with Rε = -1 data (Figure 4.20). 
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Figure 4.20  Comparison of Morrow Strain-Life equation with Grainex Mar-M 

247 data at 649°C. 
 
 
 

The Morrow Equation conservatively predicted the cyclic life when compared 
to the strain-life data at Rε = -1 and 649°C.  At 0.9% total strain range (∆ε/2 = 
0.0045) the predicted reversal to failure, 2Nf, was 400 which was 2 times lower 
than that given by the Rε = -1 data (2Nf = 950).  At the design strain (∆ε = 0.5%), 
the difference between predicted (155,000) and experimental data (240,000) is 
nearly 100,000 reversals.  One source of error was the low resolution in the 
plastic strain data used to calculate the fatigue ductility coefficient and exponent.  
This was due to the low resolution of the pen plotter used to plot the cyclic load 
versus strain curves for each of the strain-life tests.   

 
Modified Morrow with Mean Stress Effects 

Optimization of the coefficients and exponents for the Modified Morrow 
equation resulted in an R2 value of 0.928.  The coefficients and exponents  
(Table 4.8) were used in the Modified Morrow equation.  The results of the 
Modified Morrow equation were compared to experimental Grainex Mar-M 247 
strain-amplitude data (Figure 4.21). 
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Table 4.8  Optimized coefficient and  
exponent values for the Modified Morrow  
Equation for Grainex Mar-M 247 at 649°C 

Coefficients original optimized
'
fσ   (MPa) 1507 1507

 '
fε  0.117 0.027

Exponents     
b -0.0928 -0.090
C -0.628 -0.627
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Figure 4.21   Comparison of NASA Grainex Mar-M 247 data at 649°C with 

predictions from the Modified Morrow equation. 
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As expected, higher mean stresses were observed at lower strain levels while 
lower mean stresses were observed at higher strain levels (see also Figure 
4.17).15  This is because the larger the strain range, the greater the degree of 
relaxation of the initial mean stress imposed by the Rε = 0 strain condition.  The 
effect of mean stress on cyclic life was more pronounced at lower strain levels 
(Table 4.7).  For example, at the design strain level of 0.5% total strain, the 
average mean stress was 313 MPa, while at 0.9% total strain, the average mean 
stress was 74 MPa. 

Also, cyclic life decreased as mean stress increased for constant strain 
amplitude.  For example, at the design point of ∆ε = 0.5% (εa = 0.0025) the 
difference in cyclic life between the σm = 0 MPa line and the σm = 172 MPa line 
was nearly a factor of four.  The Rε = 0 data were observed to trend towards a 
zero mean stress at the highest strain range (εa = 0.0045).  Finally, as expected, 
compressive mean stresses predict an increase in cyclic life. 
 
Fractographic Examination 
     The majority of the crack initiation sites were observed at or near the surface 
of the gage cross-section perimeter and initiated at carbides.  The fracture 
surfaces exhibited 3 areas of cracking – crack initiation, propagation, and 
overload.   

The crack initiation site could be traced by following river patterns which point 
back to the crack initiation site (Figure 4.22 - Figure 4.24).16  By contrast, the 
overload surfaces were faceted in appearance at low magnification (Figure 4.25 
and Figure 4.26).   

No relationship was determined between crack initiation direction on the 
fracture surface in relation to the specimen’s location in the NASA disk, to Rε, 
level or %∆ε.  Dual crack initiation sites (Figure 4.25) were observed in most 
specimens tested at higher strain ranges, which is in agreement with literature17. 
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Figure 4.22  SEM Micrograph SE mode for specimen 77L at 100x.  River 

patterns pointing back to crack initiation site. 
 
 
 
 

 
Figure 4.23   SEM (SE mode), 87L, 100x.  River patterns pointing back to 

crack initiation site. 
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Figure 4.24   SEM (BE mode), 87L, 100x.  Crack propagation showing river 

patterns pointing back to crack initiation site.  (See also  
Figure 4.23) 

 
 

 
Figure 4.25   SEM Micrograph in backscattered electron mode for specimen  

26L at 25x.  Unstable fracture with dual crack initiation sites.   
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Figure 4.26  SEM (SE), 86L, 100x.  Typical overload fracture. 

 
 
     Of the 30 fracture surfaces examined, 25 exhibited surface crack initiation.  
Twenty-one of the 25 surface initiated cracks occurred at a carbide (Figure 4.27).  
Three of the remaining 4 specimens with surface initiated cracks contained voids 
(Figure 4.28).  SEM examination of the complementary surface of the specimens 
may determine if a carbide was present.  One specimen with surface initiated 
cracks (Specimen 47L)  showed both a void and a carbide at surface locations.  
Five of the 25 surface initiated cracks that started at a carbide also showed 
evidence of grain boundary cracking (Figure 4.29).  Five of the original 30 
surfaces showed subsurface crack initiation.  Four of the 5 initiated at carbides 
(Figure 4.30 and Figure 4.31) while the last (Specimen 15L) was indeterminate.   
 Table 4.9 summarizes specimen crack, void and carbide locations. 
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Figure 4.27  SEM (BE), CA1L, 500x showing surface carbide crack initiation. 
 
 
 

 
Figure 4.28  SEM (BE), 86L, 100x showing void at surface crack initiation 

site. 
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Figure 4.29  SEM (BE), CA3L, 500x. Observed grain boundary cracking. 

 
 

 
Figure 4.30   SEM (BE), 77L, 500x.  Subsurface carbide crack initiation 

occurring at a carbide. 
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Figure 4.31  SEM (BE), CA9L, 100x.  Carbide cracking within grain. 
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Table 4.9  Summary of scanning electron microscope results for Grainex 
Mar-M 247 strain-life specimens at 649°C 

Specimen  Rε %∆ε Nf 
Crack Information 

‘clock’ location, surface/subsurface, carbide/void 
CB1L -1 0.50 104433 0200, surface, no carbide present 
86L -1 0.50 120171 0230, surface, void 
66L -1 0.50 429420 0900, surface, void 
76L -1 0.58 31486 0900, surface, carbide 
CA9L -1 0.58 44313 0100, subsurface, carbide within grain 
57L -1 0.58 116335 0930, surface, void 
CB8L -1 0.67 5231 0530, surface, carbide 

47L -1 0.67 6624
Crack 1, 1100, surface, carbide                               
Crack 2, 1100, surface, void 

CA7L -1 0.67 8018 0800, surface ,carbide 

CA4L -1 0.78 1586
0430, surface, carbide + boundary,                          
0730, surface, multiple carbides 

27L -1 0.78 1668
Crack 1, 1000, surface, carbide                              
Crack 2, 1200, surface, multiple carbides 

CB6L -1 0.78 2279 0800, surface, carbide 
CB3L -1 0.90 451 0730, surface, carbide  
15L -1 0.90 484 Indeterminate, surface likely, carbide likely 

CA2L -1 0.90 875
Crack 1, 0300, surface, carbide 
Crack 2, 1200, surface, multiple carbides 

CA8L 0 0.50 10697 0500, surface, void 
77L 0 0.50 26939 0400, subsurface, carbide  
67L 0 0.50 127523 middle, within grain, carbide 
87L 0 0.58 2842 1100, surface, carbide + boundary 
CB2L 0 0.58 7970 0900, surface, carbide 
56L 0 0.58 12566 0700, subsurface, carbide 
CB5L 0 0.67 2234 0130, surface, carbide 
46L 0 0.67 3056 0900, surface, carbide 
CA1L 0 0.67 3842 0500, surface, carbide 
35L 0 0.78 723 0900, surface, multiple carbides & voids 
CB7L 0 0.78 1254 1030, surface, carbide 
CA3L 0 0.78 1352 0100, surface, carbide + grain boundary 
CB9L 0 0.90 554 0230, surface, carbide + grain boundary 

26L 0 0.90 889
Crack 1, 0700, surface, multiple carbides                
Crack 2, 0900, surface, multiple carbides 

CA6L 0 0.90 1142 1030, surface, carbide + grain boundary 
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Discussion Summary 
Tensile properties for the Grainex Mar-M 247 NASA disk at 649°C were 

presented and compared with literature data.  Fatigue strain life data for the 
same material were also presented at 649°C at strain ranges of 0.50%, 0.58%, 
0.67%, 0.78%, and 0.90%.  Both the tensile and Rε = 0 strain-life data were 
comparable with literature. 

Evaluation of mean stress effects showed a large effect on cyclic life.  The 
Halford-Nachtigall Method used with the MUS was practical for predicting Rε = 0 
life using only tensile data at 649°C.  A difference of only 18% in cyclic life was 
observed between predicted and experimental lives at the design point of 0.5% 
strain range.  The 10,000 cycle limit suggested by the Modified Morrow analysis 
at the 0.5% design strain range can be reduced accordingly to 1500 cycles using 
an equivalent –3σ reduction factor and probabilistic accounting for the 6 bolt 
holes using Eqn. 1.1. 

     During operation, the NASA disk is generally cycled at zero to maximum 
strain conditions (Rε = 0).  At the design strain of ∆ε = 0.5% the Rε = 0 results 
lead to, at the -99.95% prediction level, a cyclic crack initiation life of 1100 cycles 
which is nearly 6 times less than the initial predicted cycles to failure obtained 
previously by Tong and Steinetz.1  Probabilistic accounting for the 6 bolt holes by  
using Eqn. 1.1 gives the most conservative result of 665 cycles with 6 bolt holes.    

Thus, using the experimental data at a -99.95% prediction level and the 
presence of 6 bolt holes it was found that the NASA disk should be inspected for 
surface cracks after 665 cycles based on a total strain range of 0.50% at 649°C. 
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5.   Fatigue Crack Growth Behavior of Grainex Mar-M 247 
 
5.1 Introduction 
 
       The possibility exists that surface cracks would develop over time in the bolt 
holes of the Grainex Mar-M 247 NASA disk (Figure 1.1, Figure 3.1a, and  
Figure 3.1b) used in NASA’s Turbine Seal Test Facility.  An inspection interval of 
the bolt holes can be implemented using strain-life data and fatigue crack growth 
data to preclude catastrophic NASA disk failure.  The present chapter focuses on 
the fatigue crack growth behavior of the Grainex Mar-M 247 material. 

The purpose for characterization of the fatigue crack growth behavior is to 
predict the cycles to failure of a surface crack growing from an initial flaw to a 
critical crack length.   

 
5.2 Materials and Methods 
 
Experiment 

Tests were conducted at 649°C, at a load ratio of R = 0.05, with a sinusoidal 
waveform at a cyclic frequency of 0.33 Hz.  A surface flaw (or Kb) specimen 
(Figure 5.1) was used to simulate the growth of a flaw within a disk bolt hole.  
The Kb specimen was first developed by Coles et. al.1 for evaluating turbine 
engine components. 
     The Kb specimen was fabricated by electro-discharge machining (EDM) a 
cylinder from the sacrificial Grainex Mar-M 247 NASA disk that was 41 mm long 
by 14 mm in diameter.  A total of 8 fatigue crack growth specimens were 
fabricated from the sacrificial NASA disk (Figure 3.1a).  The cylinders were 
removed at locations adjacent to the NASA disk bolt holes and oriented 
perpendicular to the bolt hole axis.  This oriented the machined surface flaw on 
the Kb specimen perpendicular to the applied cyclic stress, since cracks tend to 
initiate within bolt holes from circumferential and radial disk stresses during 
rotation.2  The axial direction is parallel with the bolt holes of the NASA disk 
(Figure 3.1b). 
     Inconel 718 cylinders were inertia-welded to both ends of the Grainex Mar-M 
247 cylinders.  The ends of the resultant specimen were machined to a 
buttonhead for gripping by the fatigue testing machine.  The surface flaw was 
plunge EDM’d on one side of the rectangular gage section in the shape of a half-
circle (Figure 5.2).  Note that the depth and width of the surface flaw were 
approximately doubled from those dimensions shown in Figure 5.2 after failures 
outside the gage section occurred in initial tests.  Thus, the final surface flaw size 
that was used was 0.46 mm in depth by 0.91 mm in width.  This enlargement of 
the EDM notch was necessary to encourage crack growth at the surface flaw.  All 
fatigue crack growth specimens (Figure 5.3) were fabricated at Mar-Test in 
Cincinnati, Ohio. 
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Figure 5.1  Surface flaw (Kb) specimen geometry for the Grainex Mar-M 247 

fatigue crack growth tests at 649°C. 3  Dimensions are in 
millimeters. 
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Figure 5.2  Surface flaw geometry for the Kb specimen.3  Dimensions are in 

millimeters.  See also Figure 5.1 for location of notch on Kb 
specimen.   

 
 
 
 
 
  

 
Figure 5.3  Kb specimen with alumel wire attachments for potential drop 

crack growth measurement. 
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Fatigue crack growth tests were performed at the NASA Glenn Research 
Center fatigue and fracture laboratories.  A Materials Test System 810 (MTS 
Corporation, Minneapolis, Minnesota) was utilized (Figure 5.4).  The system is 
computer-controlled by a custom program, MATE (Material Analysis and Test 
Environment), which also acquires the raw fatigue crack growth data.4  Crack 
length computations for the Kb specimen are based on a closed-form analytical 
model by Gangloff et.al. that has been experimentally confirmed.5,6,7   
     Fatigue crack growth of the Kb specimen was measured using the direct 
current electrical potential difference (dcEPD) method.  The method was initially 
developed by Gangloff8 for small surface cracks in hour-glass shaped 
specimens.  The method was modified by Vanstone and Richardson9 for 
specimens having rectangular cross sections with semi-circular EDM notches.   
Fatigue crack growth in a semi-circular crack is related to voltage through an 
analytical model developed by Roe and Coffin8.  To facilitate potential drop 
measurements, 0.13 mm diameter alumel wires were tack-welded to either side 
of the EDM notch (Figure 5.5).   
 
 
 

 
Figure 5.4  Fatigue crack growth test equipment and controls at NASA’s 

fatigue and fracture laboratories. 
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Figure 5.5  Alumel wire location at the notch area of the Kb specimen. 
 
 
 
 

                   
Figure 5.6  Nominal fatigue crack growth pre-test measurements for the Kb 

specimen surface flaw geometry.   
 
 
 

Measurements of the EDM notch geometry were taken prior to installing the 
Kb specimen in the load frame (Figure 5.6).  Measurements were taken with a 
Nikon Measurescope 10 (Nikon, Tokyo, Japan) and a Nikon SC-102 X-Y digital 
readout (Nikon, Tokyo, Japan).  The Measurescope has an accuracy of      
±0.0025 mm. 

Alumel wire 

2bc

2cc 

2Lpmax

2Lpctr

2Lpmin 

notch

tack-weld

Key 
2bc crack height 
2cc crack width 
2Lp potential probe spacing 
 
Nominal Measurements [mm] 
2bc  0.152 
2cc  0.953 
2Lpmin  0.523 
2Lpctr  0.732 
2Lpmax  0.955 
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The measurements were used as input into MATE to calculate crack length, 
maximum load, and dcEPD voltage during the test.  An assumption on the EDM 
crack depth was initially inputted into MATE, based on original EDM notch 
specifications, and was subsequently corrected for in post-test calculations.  

The Kb specimen was installed into the MTS load frame with 12-gage copper 
leads attached to the buttonheads.  A constant 10 amps was applied to the 
leads, forming a circuit through the specimen having a voltage across the Alumel 
wire locations (Figure 5.5).  The voltage increased with increasing crack length 
and depth.  Baseline voltage measurements were taken to adjust for 
thermoelectric influences.10   

Prior to starting the pre-cracking portion of the test, initial voltages were taken 
at 0 N and 17.8 KN axial load on the KB specimen.  The specimen was pre-
cracked at room temperature to grow the notch to approximately 0.81 mm in 
depth.  Pre-cracking was conducted to ensure that fatigue crack growth occurred 
beyond the recast layer resulting from the EDM notch.  Pre-cracking was 
performed with a sinusoidal waveform at 3 Hz, and R = 0.05 (Pmax =  25.8 KN).  
Both crack length voltages and number of cycles were acquired.  After pre-
cracking, reference voltage measurements (VN) were again taken at 0 N and 
17.8 KN axial load.  These voltages were used to correct for voltage drift and for 
normalizing the acquired crack length voltages for data reduction.  Reference 
voltages were taken prior to the pre-crack test and the actual crack-growth test at 
649°C.  

Three type-K thermocouples were tack-welded to the gage section of the Kb 
specimen (Figure 5.7).  Thermocouple 1 (T/C 1) measured the Kb specimen test 
temperature.  T/C 2 and T/C 3, spaced 6.35 mm from the center thermocouple, 
were used for temperature control. 

Two half-section resistance furnaces (Figure 5.4) were then positioned 
around the Kb specimen.  The specimen was heated to 649 ± 1°C at zero load 
with the Kb surface temperature read out through a digital meter.  Initial voltage 
potentials were measured at axial loads of 0 N and 17.8 KN.  An initial voltage 
was also taken to account for thermoelectric influences.  The test was conducted 
with a sinusoidal waveform at 0.33 Hz, and a ratio of R = 0.05 (Pmax = 27.4 KN).  
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Figure 5.7  Thermocouple locations on the Kb specimen gage section 

indicated by the arrows.  Thermocouples not shown. 
      
 
 
 
     For each acquisition, MATE recorded the cycle count, total crack length, 
maximum load, corrected dcEPD voltage, number of dcEPD points acquired, 
thermoelectrically induced voltage, and input load ratio.  Data was taken 
approximately every 0.0508 mm of crack extension.11  For back-up, voltage and 
load history were recorded with a strip chart recorder and data acquired by 
MATE was printed.   
     The crack was allowed to grow to 2.54 mm.  This crack length limitation was 
due to the 4.32 mm gage thickness.  Experience has shown that crack length 
voltage accuracy begins to drop off for crack lengths at approximately 65% of the 
gage thickness.12  Final voltages were again taken at axial loads of 0 N and  
17.8 KN.  At the conclusion of the test, the test specimen was brought to failure 
by monotonically increasing the load to failure. 
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Data Reduction 
     Crack depth data was corrected based on post-test measurements of the 
fracture surface (Figure 5.8 and Figure 5.9).  
  
 
 
 
 

 
Figure 5.8   Fracture surface measurements for the Grainex Mar-M 247 Kb 

specimen (13K).  Dimensions are in millimeters. 
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Figure 5.9   Fracture surface measurements for the Grainex Mar-M 247 Kb 

specimen (32K).  Dimensions are in millimeters. 
 

The solution was automated within the MATE program where iterations were 
performed which compared the measured voltage for a calculated crack depth to 
the voltage predicted by the Roe-Coffin potential solution9 for a semi-elliptical 
surface notch.   
 
The Roe-Coffin solution, given by Gangloff,8 has the form 
 

 ),,,,,,( pnnnccc
N

LcbacbafV
V =  Eqn.  5.1  (Ref.8)     

where V =  crack length voltage [volts] 
 VN =  reference voltage [volts] 
 ac =  crack depth [mm] 
 bc =  crack half-height [mm] 
 cc =  crack surface half-width [mm] 
 an =  initial EDM crack depth [mm] 
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 bn =  initial crack half-height [mm] 
 cn =  initial crack surface half-width [mm] 
 Lp =  potential probe spacing half-width [mm] 
 
 

The crack depth and length were iterated within the MATE program such that 
the difference between the measured and predicted voltages of the crack depth 
and length were minimized.  This was done by holding constant 

NV
V , an, bn, cn, 

and Lp, and holding constant the aspect ratio, 
c

c
a

c , for each increment of crack 

depth acquired during the test.  Thus, crack depth was generated for each cycle.   

     The crack growth rate, 
dN
dac , was calculated using the incremental polynomial 

method, per ASTM E647.13  The stress intensity range, ∆K, was calculated within 
MATE using stress-intensity factor equations developed by Newman and Raju 14 

for a semi-elliptical surface crack subjected to tensile loading:   
 

 ),,,( Φ=
c

cc

c

c
S

c
I b

c
t
a

c
a

F
Q
a

sK π   Eqn.  5.2  (Ref.14)   

 
where KI = stress-intensity factor (Mode I)  [MPa m ]  
 s = remote uniform tensile stress [MPa] 
 Q = shape factor 
 Fs = boundary correction factor 
 t = through thickness of test specimen [mm] 
 φ = ellipse parametric angle [radians] 
 
 
Kmax was determined by inputting the maximum recorded load at each data point 
into Eqn. 5.2, which is programmed into MATE.  Finally, ∆K was calculated using 
 

 ( )RKK −=∆ 1max  Eqn.  5.3   (Ref. 15)  

 
where  ∆K = stress intensity range [MPa m ] 
 Kmax = maximum stress intensity factor [MPa m ] 
 R = stress ratio 
 

The resultant 
dN
dac  versus ∆K data were then plotted on log-log coordinates.   
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The fatigue crack growth behavior over the entire range of data that was 
collected was modeled using: 

 

 ( )mc KC
dN
da

∆=  Eqn.  5.4  (Ref.15)  

 

where 
dN
dac  = fatigue crack growth rate [mm/cycle] 

 C = coefficient ( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
m

mMPa

cyclemm  

 m = exponent 
 
This relationship was used to estimate fatigue crack growth life of the Grainex 
Mar-M 247 material.  The entire range of data was evaluated with this 
relationship to provide a conservative estimate of fatigue crack growth life.  
 
Statistics 
     Linear regression analysis was conducted to evaluate the log-log transformed 
data: 
 

 ( ) ( )KmC
dN
dac ∆+=⎟

⎠
⎞

⎜
⎝
⎛ logloglog  Eqn.  5.5 

 
A statistical comparison between regression lines was performed to 

determine if the individual slopes and intercepts were statistically similar at a 
confidence level of 95%.  A test of equal variances on the error terms for each 
regression line was first done to validate a comparison between regression 
lines.16  To test for similar slopes and intercepts, a reduced statistical model was 
determined which combined data sets from successful fatigue crack growth tests.  
The reduced statistical model was: 

 

 ijijij XY εββ ++= 10  Eqn.  5.6  (Ref.16) 

 

where Yij = predicted value 

 β0 = intercept of reduced model 

 β1 = slope of reduced model 
 Xij = independent variable 

 εij = error term    
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A test statistic, F*, was calculated and compared with the F value determined  
from F-tables based on significance level and degrees of freedom.  F* is defined 
as:  

 

 
4

)(
2

)()(*
21 −+

÷
−

=
nn
FSSEFSSERSSEF  Eqn.  5.7  (Ref.16)    

where SSE(R) = sum squared error of reduced model 
 SSE(F) = sum squared error of full model 
 n1  = number of data points for data set 1 
 n2  = number of data points for data set 2 
 
     For F* ≤ F(1-a; 2, n1 + n2 - 4) a conclusion can be made that the slopes and 
intercepts of both regression lines are equal.  Note that “a” is the desired 
percentile level. 
 
Small Crack Growth Behavior 

Because of the small size of the EDM notch dimensions (Figure 5.2) with 
respect to the Grainex Mar-M 247 grain size (1.6 mm, See Chapter 3), it was 
possible that fatigue crack growth would occur in the small crack growth regime.  
Small cracks are defined as having dimensions equal to or smaller than the 
dimension of greatest microstructural significance, such as grain size.15  Small 
cracks are characterized by higher growth rates and their ability to grow at ∆K 
values below the threshold stress intensity range, ∆Kth (Figure 5.10).  Small 
cracks may decelerate and arrest or approach a minimum in fatigue crack growth 
rate, then accelerate, and merge with long crack growth behavior.  Thus, the 
fatigue crack growth behavior and respective crack size relative to the grain size 
was evaluated to determine if fatigue crack growth followed small crack behavior. 
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Figure 5.10  Typical small-crack growth behavior.17 

 
 
Linear-Elastic Fracture Mechanics (LEFM) 
 An assessment of the validity of linear-elastic fracture mechanics (LEFM) was 
made based on specimen geometry.  LEFM limitations were compared to 
specimen geometry based on 
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 Eqn.  5.8   (Ref. 15) 

 
where ac = crack depth [mm] 
 t = through thickness of the test specimen [mm] 
 h = half-height of the Kb specimen gage section  
   from the EDM notch [mm] 
 
Plastic-Zone Size 

The plastic zone size was compared with the average grain size of Grainex 
Mar-M 247.  The plastic zone size for plane stress conditions, 2r0σ, was 
estimated by: 
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Fractographic Examination 

Fatigue crack propagation surfaces from each specimen were prepared for 
examination by carefully removing the gage section with a cut-off wheel.  The 
surface was cleaned and then mounted.  Fracture surfaces were examined using 
a light microscope and a scanning electron microscope (SEM) under secondary 
electron (SE) and backscattered electron (BE) modes.   

Fracture surface features were identified including: initial and final EDM 
notches; pre-crack region; low ∆K (= 23.3 to 26.4 MPa m ) and high ∆K (= 35.7 
to 39.1 MPa m ) regions; and the overload region.  SEM micrographs of the low 
and high ∆K regions were taken, respectively, at 1.00 – 1.25 mm and 2.00 to 
2.25 mm from the EDM notch origin.  A comparison was made between crack 
growth rate and crack depth.  The microscopic crack growth rate was determined 
for the low and high ∆K regions by measurement of striation spacings.   

A comparison was made between the experimentally applied ∆K and the 
calculated ∆K based on striation spacings at the low and high ∆K fracture surface 
regions using the Bates and Clark relationship18: 

 

 striation spacing 
2

6 ⎟
⎠
⎞

⎜
⎝
⎛ ∆

=
E
K   Eqn.  5.10 (Ref.18) 

 
where Young’s modulus, E, was taken to be 194 GPa (see Chapter 4).  The 
experimental ∆K used to compare with the Bates and Clark relationship was 
taken from the averaged ∆K determined from the low ∆K regime (24.85 MPa m ) 
and high ∆K regime (37.40 MPa m ).    
 
5.3 Results and Discussion 
 
Test Summary 

Of the original eight Kb specimens, two tests (13K and 32K) were successfully 
conducted after doubling the EDM notch width and depth.  Four Kb specimens, 
previously tested, failed prematurely outside the EDM notch.  The remaining two 
were untested. Hereafter, the results pertain only to Kb specimens 13K and 32K. 
 
Experimental Data 

The fatigue crack growth behavior for the two tests specimens is shown in 
Figures 5.11 and 5.12 and the coefficient, C, and exponent, m, from Eqn. 5.4 are 
given for each specimen in Table 5.1. 
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Figure 5.11   Fatigue crack growth behavior for Grainex Mar-M 247 at 649°C 

(Kb specimen 13K).   

 
Figure 5.12   Fatigue crack growth behavior for Grainex Mar-M 247 at 649°C 

(Kb specimen 32K).  
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Table 5.1 Regression results of Eqn. 5.4 for fatigue crack growth  
behavior of Grainex Mar-M 247 Kb specimens at 649°C for the  

entire stress intensity range tested (13K and 32K) 
Specimen intercept slope R2 constant C exponent m 

13K -11.98 5.80 0.93 1.05x10-12 5.80 

32K -10.53 4.82 0.90 2.94x10-11 4.82 

   
The deceleration and then acceleration of the dac/dN data in the low ∆K 

region may be due to the crack approaching microstructural barriers such as 
grain boundaries or due to crack closure.17,21  This small crack growth behavior 
generally transitions into long crack growth behavior at higher ∆K values19, and 
this appears to have been the case in this study.   
 
Statistics 

Fatigue crack growth data with regressions from both data sets were 
analyzed for similarity.  The variances between the individual regressions were 
found to be equivalent to a 95% confidence level.  Thus a comparison between 
the regressions for similarity was valid.  The reduced model (Eqn. 5.6) was 
determined with β0 = -11.20 and β1 = 5.28.  Finally, F* (Eqn. 5.7) was calculated 
as -72.56.  From standard F-tables, F(0.999, 2, 120) was 7.32.  Thus F*≤ F and 
the slopes and intercepts were equal to within a 99.9% confidence level.  The 
data from the two specimens were thus combined into one data set and an 
overall coefficient, C, and exponent, m, were determined (Figure 5.13). 
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Figure 5.13   Regression results using both specimen data sets for Grainex 

Mar-M 247 fatigue crack-growth Kb data. 
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To be conservative in predicting fatigue crack growth life, both data sets (13K 
and 32K) were used with regression analysis over the entire experimentally 
determined range.  The steeper dac/dN versus ∆K slope in both data sets at low 
∆K was thus taken into account as well as the shallower slope at high ∆K.  This is 
appropriate since a conservative inspection interval is needed for the turbine seal 
rig facility (see Chapter 6). 
 
Small Crack Growth Behavior 

Small crack growth behavior (Figure 5.10) was observed for both fatigue 
crack growth specimens (Figure 5.11 and Figure 5.12).  That is, the crack growth 
rate for both specimens was observed to initially decelerate to a minima and then 
to transition into the long crack growth regime. 

In this study, the transition from small crack growth to long crack growth 
appeared to occur at approximately  ∆K = 30 MPa m  (dac/dN = 4e-4 mm/cycle) 
for both fatigue crack growth tests (Figure 5.13), based on the similarity in dac/dN 
versus ∆K behavior above the transition.  Consistent with this, the corresponding 
range of crack depths at that stress intensity was between 1.55 and 1.65 mm 
(see Figure 5.17 below).  This coincides with reported Grainex Mar-M 247 
average grain sizes of 1.6 mm.  In other words, once the crack grows larger  
than the grain size, long crack growth behavior is expected.   

 
Linear Elastic Fracture Mechanics, LEFM 

Initial and final crack lengths for both fatigue crack growth test specimens 
were compared to the Kb specimen geometry to determine LEFM applicability 
using Eqn. 5.8 (Table 5.2).  Initial crack lengths did not meet LEFM criteria for 
either specimen.  Final crack lengths and remaining gage specimen thickness 
(i.e. t – ac) also did not meet LEFM criteria.   

 
 
Table 5.2 Comparison of initial and final crack lengths to Kb specimen 

geometry (13K and 32K) for LEFM applicability (Eqn. 5.8) at 649°C 
Initial 13K 13K 

Criteria Pass/Fail Initial 32K 32K 
Criteria Pass/Fail

ac [mm] 0.846 0.963 Fail ac [mm] 0.884 0.919 Fail 
(t- ac) [mm] 3.472 0.963 Pass (t- ac) [mm] 3.434 0.919 Pass 

h [mm] 7.976 0.963 Pass h [mm] 7.976 0.919 Pass 

Final 13K 13K 
Criteria Pass/Fail Final 32K 32K 

Criteria Pass/Fail

a [mm] 2.550 3.840 Fail ac [mm] 2.560 3.607 Fail 
(t- ac) [mm] 1.768 3.840 Fail (t- ac) [mm] 1.758 3.607 Fail 

h [mm] 7.976 3.840 Pass h [mm] 7.976 3.607 Pass 
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The use of an LEFM approach for fatigue crack growth tests assumes that 
plasticity is limited to a local region that is small compared to the specimen 
dimensions.15  Predicted gross yielding of the specimen calls into question the 
use of an LEFM approach.  In this study, during fatigue crack growth testing, the 
initial maximum stress level at the gage section, calculated using the uncracked 
ligament, was approximately 79% of the 0.2% offset yield stress at 649°C.  The 
final maximum stress level at the gage section, calculated using the uncracked 
ligament, was nearly 118% of the 0.2% offset yield stress.  Thus, the fatigue 
crack growth behavior in these tests may have been influenced by gross yielding 
in the gage region.  This suggests that the fatigue crack growth behavior of 
Grainex Mar-M 247 may be worse than the experimentally-obtained data.  
Fatigue crack propagation tests of Grainex Mar-M 247 using a specimen 
geometry that meets LEFM criteria would help answer this question.   Because of 
the uncertainty in the data, a safety factor of 2 is used to predict fatigue crack 
growth life (see Chapter 6). 

 
Plastic Zone Size 

The initial and final plane stress plastic zone sizes for both specimens 13K 
and 32K (Eqn. 5.9) can be found in Table 5.3. 

 
 

Table 5.3  Initial and final plastic zone sizes for Grainex  
Mar-M 247 Kb fatigue crack growth specimens,  

13K and 32K, for plane stress conditions at 649°C 
Plane Stress Plastic Zone Size 

Specimen 
Initial [mm] Final [mm] 

13K 0.241 0.960 

32K 0.230 0.902 

 
 
The final plane stress plastic zone size did not exceed the average grain size 

of 1.6 mm determined from results in Chapter 3 (Material Cut-Up and 
Characterization).  Thus, the recorded dac/dN versus ∆K behavior was likely 
microstructurally-sensitive.20   

 
Fractographic Examination 

The fracture surface of specimen 13K is shown in SE mode (Figure 5.14 and 
Figure 5.15)   Fracture surface features for Kb specimen 32K were similar. 
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Figure 5.14   Grainex Mar-M 247 fatigue crack growth fracture surface for 

Kb specimen 13K (649°C). Dotted area enlarged in Figure 5.15 
 
 

 
Figure 5.15  Close-up of Grainex Mar-M 247 fatigue crack growth fracture 

surface features for Kb specimen 13K at 649°C.  Low ∆K 
region: 23.3 to 26.4 MPa m .  High ∆K region:  35.7 to 39.1 
MPa m .   SEM (SE mode).  The initial EDM notches are 
indicated in blue and the initial pre-crack region (conducted 
at 649°C) is indicated in red. 
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Figure 5.16   Grainex Mar-M 247 fatigue crack growth fracture surface for Kb 

specimen 13K at 649°C showing grain boundary near 
beginning of fatigue crack growth (SEM – BE mode)   

 
 
Under BE mode, grain boundaries were observed in the fatigue crack 

propagation region beginning between 0.75 and 1.00 mm radii from the EDM 
notch origin (Figure 5.16).  Note that the 649°C fatigue crack growth began at 
approximately 0.82 mm from the EDM notch origin. 

The decreasing crack growth rate at low ∆K (Figure 5.11) at a crack depth 
between 0.85 and 0.90 mm may be related to the grain boundary (Figure 5.16) 
between 0.75 and 1.50 mm from the notch origin.  This deceleration in crack 
growth rate may be due to the crack front encountering a microstructural barrier 
such as a grain boundary.  In fact, the minima in the fatigue crack growth rate 
was found to correspond to a crack depth of 0.88 mm (Figure 5.17) for specimen 
13K.  This is consistent with findings by Taylor17 and Suresh et.al. 21   

Grain Boundary
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Figure 5.17   Fatigue crack growth rate versus crack depth for Grainex  

Mar-M 247 Kb specimen (13K) at 649°C.  
 
 

The low ∆K region (Figure 5.18) of specimen 13K between 1.00 to 1.25 mm 
from the EDM notch origin showed pockets of fatigue striations.  The 
microstructural fatigue crack growth rate per cycle was approximately               
2.5 x 10-3 mm/cycle  (Figure 5.17).  In contrast, the high ∆K region (Figure 5.19) 
shows more organized and delineated striations and the microstructural fatigue 
crack growth rate is approximately 5 x10-3  mm/cycle (Figure 5.17).  Specimen 
32K showed similar results.   
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Figure 5.18   Low ∆K fatigue striations of Grainex Mar-M 247 fatigue crack 

growth fracture surface for Kb specimen 13K at 649°C (SEM –
SE mode) (See also Figure 5.15).  ∆K range from 23.3 to 26.4 
MPa m .  Arrow indicates crack growth direction. 

 
 

 
Figure 5.19   High ∆K fatigue striations of Grainex Mar-M 247 fatigue crack 

growth fracture surface for Kb specimen 13K at 649°C (SEM –
SE mode) (See also Figure 5.15).  ∆K range from 35.7 to 39.1 
MPa m .  Arrow indicates crack growth direction.   
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Table 5.4 compares the experimentally applied ∆K and the calculated ∆K 
based on striation spacings taken from the low and high ∆K regions.  The stress 
intensity ranges were overestimated by the Bates and Clark relationship,        
(Eqn. 5.10), by a factor of 5 for both low and high ∆K regions. 

 
 

Table 5.4 Comparison between experimental ∆K and calculated ∆K from 
striation spacing measurements for Grainex Mar-M 247 at 649°C 

 

∆K 
region 

∆K (experimental)*

[MPa m ] 
Striation Spacing 

[mm/cycle] 
∆K (Bates & Clark18) 

[MPa m ] 

Low 24.85 2.5 x 10-3 125.2 

High 37.40 5.0 x 10-3 177.1 

*average 

 
 
Adjusting Eqn. 5.10 by the percent striated area of the fracture surface may 

result in better agreement between the experimental and calculated ∆K.18  A 
rigorous survey of the fractographic area would be needed to determine if the 
Bates and Clark relationship would be a reliable predictor of cyclic stress 
intensity. 
 
Comparison of Data to Literature 

The regression of the combined experimental data was compared to literature 
at 426°C and 538°C (Figure 5.20 and Table 5.5).  The fatigue crack growth rate 
increases with test temperature at constant cyclic stress-intensity.  Data reported 
by Macha et. al. 22, , MacIntyre et.al. 23, Helmink et.al. 24, and Alloy Digest,25 
support this observation.  The data from this study had the highest fatigue crack 
growth rate, since tests were conducted at the highest test temperature, 649°C.   
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Figure 5.20  Comparison of Grainex Mar-M 247 to literature.22,23,24,25 

 
 
 
 

 
Table 5.5  Comparison of experimental Grainex Mar-M 247 test  
parameters with reported data from available literature.22,23, 24,25 

 This Study Macha MacIntyre Alloy Digest Helmink 
Specimen Type Kb C-T unknown unknown Unknown 
Temp [°C] 649 426 538 538 538 
Frequency [Hz] 0.33 30 0.33 unknown Unknown 
Load Ratio 0.05 0.1 0.05 0.05 Unknown 
Waveform sine sine unknown unknown Unknown 
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Summary 
Small crack growth behavior observed by minima in the fatigue crack growth 

rate was likely related to microstructural barriers such as grain boundaries.  The 
data transitioned towards long crack growth behavior at higher ∆K.  The fatigue 
crack growth behavior is likely microstructurally sensitive because the final plane 
stress plastic zone size was predicted to be smaller than the average grain size.   

Data sets from both fatigue crack growth tests were combined to account for 
the higher crack growth rates in the low ∆K region.  However, since gross 
yielding was predicted at the fracture surfaces and LEFM criteria were not met, 
this may indicate a more severe dac/dN versus ∆K behavior than given by the 
data.  Thus, an arbitrary factor of 2 safety was used for determining fatigue crack 
growth life (see Chapter 6).  
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6. Determination of the NASA Disk Inspection Interval 
 
6.1 Introduction 
 

As discussed in Chapter 1, eddy-current inspections are used to examine the 
NASA disk bolt holes after a set number of cycles at maximum operating 
conditions.  In general, engine companies use eddy current inspection or other 
non-destructive evaluation procedures for turbine disks, such as the Grainex 
Mar-M 247 NASA disk, to prevent disk failure by growth of an existing crack to a 
critical crack length, acrit.  The inspection interval is based on a critical crack 
length, acrit, determined at a specific cyclic life from KIC tests at a specific test 
temperature, stress level, and detectable threshold crack size.  

This chapter discusses the eddy-current inspection interval determined for the 
Grainex Mar-M 247 NASA disk based on strain-life and fatigue crack growth 
results from previous chapters.  

 
6.2 Methods 
 

Although the dac/dN versus ∆K behavior was estimated in Chapter 5, a critical 
crack length was not determined because of a lack of valid KIC tests.  However, 
an estimate of the critical crack length at failure is required to predict cyclic life.  
Data reported by Kaufman1 indicates that the plane-strain fracture toughness, 
KIC, for Grainex Mar-M 247 is greater than 55 MPa m at 760°C.  The maximum 
∆K value of 40.83 MPa m , attained at the end of the fatigue crack growth tests, 
can be used as a conservative estimate of KIC.  This is reasonable since the 
fatigue crack growth behavior was observed to be well-behaved at the end of the 
test (i.e. stable crack growth rate). 

Assuming KIC to be approximately 40 MPa m , the critical crack length, acrit, 
for a cyclic stress intensity range of 40 MPa m  was determined.  Using the 
regression values for coefficient, (C = 6.34x10-12), and exponent, (m = 5.28), for 
the combined data (Chapter 5, Figure 5.13)  with an initial crack size of 0.381 
mm (the threshold level for eddy-current inspection2), the crack length versus 
cycles can be calculated iteratively and plotted.3  Assuming the initial crack 
length, ai, occurs at cycle 1, the following crack length at cycle 2 is calculated as 
follows: 

1.   Calculate ∆K based on iaFK πσ∆=∆ ˆ .  ∆σ is 699 MPa from 

analyses by Tong and Steinetz.4  F̂ is 1.12 for a half-elliptical 
surface crack.5  

2. Calculate dac/dN per Eqn. 5.4 (Chapter 5) using the values for C 
and m found for the combined data set. 

3. Recalculate the crack length for cycle 2 by adding the previous 
crack length, ai, to the value dac/dN calculated in step 2.  The 
estimated crack growth length for the following cycle is dac/dN. 

4. Repeat steps 1 – 3 until ∆K is approximately 40 MPa m .   
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6.3 Results and Discussion 
 

The calculated critical crack length was 0.831 mm at 734 cycles at               
∆K = 40 MPa m  (Figure 6.1).  An average crack growth of 0.016 mm per  
50 cycles was calculated from cycle 0 to approximately cycle 350.  

An arbitrary safety factor of 2 on cyclic fatigue crack growth life was used 
since results from Chapter 5 indicate that LEFM conditions were not met and 
gross yielding was predicted at the gage section.  Thus, the calculated cyclic life 
of 734 cycles is reduced, by half, to 367 cycles.  Also, the corresponding crack 
depth is reduced from 0.831 mm to a crack depth of 0.501 mm.   

The total fatigue life of a material often encompasses approximately 90% 
fatigue strain-life and 10% fatigue crack growth life.6  Recall Figure 4.12 which 
gives the Rε = 0 fatigue strain-life crack initiation curve at 649°C.  At the design 
strain of 0.5% the mean life to crack initiation is approximately 15,000 cycles.  
Combining this with the predicted fatigue crack propagation cycles to failure, 734, 
in Figure 6.1 gives a total life of 15,734 cycles.  This approach suggests that, for 
the Grainex Mar-M 247 NASA disk operating at 649°C air temperature, crack 
initiation represents 95% of the cyclic life of the NASA disk while the remaining 
5% is used to propagate the crack to failure. 

 
Figure 6.1   Grainex Mar-M 247 NASA disk fatigue crack growth rate with 

increasing cycles at 649°C. 
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     However, considering the environment in which the NASA disk is used and 
the safety required for personnel and equipment, statistical and other safety 
factors must be used to estimate the inspection interval.  Specifically, using the -
99.95% prediction interval shown in Figure 4.12, the cyclic life to crack initiation, 
with statistically 1 failure in 2000, is 1100 cycles at the design strain of 0.5% at 
649°C.  Accounting for the 6 bolt holes using the system life analysis as 
previously discussed in Chapter 1, the resultant crack initiation life is 665 cycles.  
Combining this with the predicted fatigue crack propagation cycles of 367 cycles 
(using a factor of safety of 2) gives a total cyclic life for the Grainex Mar-M 247 
NASA disk bolt holes of 1032 cycles at a crack length of 0.501 mm at maximum 
disk operating conditions.   

Since the eddy-current detection threshold is currently 0.381 mm, an initial 
NASA disk bolt hole inspection is recommended starting at approximately 665 
cycles to detect crack initiation.  Inspection intervals are then recommended 
approximately every 50 cycles thereafter to adequately monitor fatigue crack 
growth.  The NASA disk should be retired from service upon attaining either 1032 
cycles or a crack depth of 0.501 mm (Figure 6.2).  One possible implementation 
plan is given in Figure 6.3. 

 

 
Figure 6.2   Total fatigue life of Grainex Mar-M 247 at maximum operating 

conditions of the NASA Turbine Seal Test Rig. 
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Figure 6.3   Decision tree for implementing eddy-current inspection 

interval for Grainex Mar-M 247 NASA disk. 
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7. Future Work 
 
7.1 Effect of Material limitations 
 
     The size and number of test specimens (tensile, strain-life, and fatigue crack 
growth) were limited due to the single Grainex Mar-M 247 NASA disk available 
for cut-up.  This also limited preferential cutting planes for microstructural 
examination of the NASA disk from the rim to the centerline. 

Priorities were set on the specimens taken out of the NASA disk based on the 
data that was needed.  For example, fatigue crack growth specimens were taken 
near the bolt hole locations since they were the structural feature most limiting in 
terms of fatigue strain-life per analyses by Tong and Steinetz.1  A large number 
of strain-life specimens were taken out of the NASA disk to obtain a statistical 
prediction of the cyclic crack initiation life at design conditions with a high degree 
of confidence (i.e. 99.95%).  Tensile specimens numbered the fewest because 
the results were used to confirm previous data and to make general comparisons 
to fatigue strain-life prediction models.  Finally, specimen cut-out plans were 
necessary to ensure that an adequate cross-section of the NASA disk was 
available for metallurgical analysis. 
     The biggest disadvantage to having limited materials for test specimens was 
that fracture toughness tests could not be carried to out to determine KIC.  Even 
with available material for fatigue crack growth tests, size limits on Kb test 
specimen thicknesses brought into question the applicability of LEFM for these 
fatigue crack growth analyses to predict a fatigue crack growth life.  Further tests 
are needed to determine KIC from adequately sized fracture toughness 
specimens. 

Finally, because of inherent differences in processing from casting to casting, 
the Grainex Mar-M 247 material study was limited to the set of disks (7 total 
including sacrificial disk) used at NASA’s Glenn Research Center Turbine Seal 
Test Facility. 
 
7.2 Effect of Test Parameter Limitations 
 
     Tests were limited to the 649°C bolt hole temperature as predicted from 
analysis.1  This was based on the limited material available and because the bolt 
hole region had the lowest predicted strain-life limits in terms of maximum 
operating temperature and stress. 
     Strain-life specimens were limited to two strain ratios with 5 strain-levels at 
each R-ratio.  Work with statisticians aided in setting the proper number of 
repeats (three) at each strain-level to ensure a statistical analysis could be 
carried out for each R value.  Other parameters were held constant, such as 
frequency and waveform and thus limited the study accordingly.  Further, 
cumulative fatigue damage effects were not tested. 
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   Fatigue crack growth tests were also limited to one set condition (R = 0.05, 
waveform = sine, temperature = 649°C, frequency = 0.33 Hz).  Thus effects of 
these parameters were not within the scope of the study.  Hold-times were also 
not considered nor was threshold limit testing. 
 
7.3 Eddy-Current Limitations 
 
     Eddy-current threshold crack size limits (0.381 mm) currently place limitations 
on the detectable defect size.  Thus, -99.95% prediction intervals were placed for 
the strain-life cycles to crack initiation.  Also, an arbitrary safety factor of 2 was 
imposed for the fatigue crack growth critical crack size.  
 
7.4 Recommendations for Further Research or Improvements 
 
     Material availability for KIC testing would improve on the predicted critical 
crack length to failure calculation.  Conclusions made on the fatigue crack growth 
study were done in consideration of the available literature data and specifically 
on the range of ∆K tested. 
     Characterization of the material microstructure would benefit from a complete 
chord slice from the NASA disk rim to the disk center.  Also, Grainex Mar-M 247 
disks used in the turbine seal test facility that would eventually be retired from 
service could possibly be used to study the effects of temperature and stress 
over time on the microstructure. 
     Finally, strain-life and fatigue crack growth as well as creep tests from 
material at the NASA disk rim should be considered.  These areas experience 
higher operating temperatures but not necessarily the same magnitude of stress 
seen at the hub location.  Nevertheless, creep is an additional issue and would 
complement the work done on characterizing the bolt hole location on the 
Grainex Mar-M 247 NASA disk. 
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